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The evolution of avian feathers have recently been illuminated by fossils and the 

identification of genes involved in feather patterning and morphogenesis. 

However, molecular studies have focused mainly on protein-coding genes.  

Using comparative genomics and more than 600,000 conserved regulatory 

elements, we show that patterns of genome evolution in the vicinity of feather 

genes are consistent with a major role for regulatory innovation in the evolution 

of feathers. Rates of innovation at feather regulatory elements exhibit an 

extended period of innovation with peaks in the ancestors of amniotes and 

archosaurs.  We estimate that 86% of such regulatory elements were present 

prior to the origin of Dinosauria.  On the branch leading to modern birds, we 

detect a strong signal of regulatory innovation near IGFBP2 and IGFBP5, which 

have roles in body size reduction, and may represent a genomic signature for the 

miniaturization of dinosaurian body size preceding the origin of flight. 
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 Feathers constitute complex branched structures that arise through interactions 

between the dermis and epidermis (Widelitz et al. 2003; Mou et al. 2011; Ng et al. 2012; 

Li et al. 2013; Lin et al. 2013).  Although feathers were long thought to be a key 

innovation associated with the origin of avian flight, paleontological discoveries over the 

past fifteen years indicate a more ancient origin; filamentous feather precursors are now 

known to be present in many lineages of non-avian dinosaurs, and pennaceous feathers 

clearly arose prior to the origin of flight (Xu et al. 2001; Norell and Xu 2005; Zheng et al. 

2009; Kellner et al. 2010; Godefroit et al. 2014).  At the same time, the molecular 

processes underlying feather development and deployment throughout the integument 

are becoming better known through !studies of gene expression patterns (Antin et al. 

2014) and natural mutants (Mou et al. 2011; Ng et al. 2012).  Comparative genomics 

can offer insights into the evolutionary history of functional elements in the genome; 

however, aside from the β-keratins, which are known to have diversified extensively on 

the lineage leading to birds (Li et al. 2013), we know little about evolutionarily novel 

genes or noncoding regions associated with feather development. Recent studies have 

shown that regulatory changes underlie many key phenotypes in vertebrates (Karlsson 

et al. 2007; Chan et al. 2010; McLean et al. 2011; reviewed in Wray 2013), but 

regulatory innovations associated with the origins of feathers have not been 

systematically explored.  In particular, conserved non-exonic elements (CNEEs) have 

emerged as important regulators of gene expression (Visel et al. 2008) and have 

revealed the evolutionary dynamics of genomic regions associated with novel 

phenotypes such as mammalian hair (Lowe et al. 2011). 
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Results and Discussion 

Conserved non-exonic elements and constraint in the avian genome.  We 

identified a set of 193 genes that have been associated with feather development 

through mutant phenotypes or spaciotemporally restricted expression patterns 

(Supplementary Materials and Supplementary Table 1).  To investigate the evolutionary 

history of these genes and their potential regulatory elements, we constructed a 19-way 

whole-genome alignment referenced on the chicken genome (Hillier et al. 2004) 

containing four birds, two crocodilians, two turtles, a lizard, four mammals, a frog, and 

five actinopterygian (ray-finned) fish.  Regions of the genome showing evolutionary 

constraint were identified using a phylogenetic hidden Markov model to detect regions 

of the alignment evolving more slowly than synonymous sites in coding regions. Overall, 

957,409 conserved elements totaling ~71Mbp and spanning ~7.2% of the chicken 

genome were identified, a higher percentage than the 5% often reported for the human 

genome.  This result is consistent with the small (1.2 Gb) size of the chicken genome 

relative to the human genome, making the total amount of sequence annotated as 

constrained about half of what is currently reported for human (Siepel et al. 2005; 

Lindblad-Toh et al. 2011).  To identify putative regulatory elements we removed any 

regions overlapping an exon annotated in chicken, or another species, resulting in 

602,539 CNEEs covering 4.4% of the chicken genome. We identified the gene that each 

CNEE is likely to regulate by assigning each CNEE to the gene with the closest 

transcription start site, and found that 13,307 of the CNEEs were associated with the 

193 feather-related genes in the data set.  Although regulatory elements can act over 

long genomic distances that include genes not regulated by the elements (Kleinjan and 
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van Heyningen 2005), experimentally identified enhancers tend to be closest to genes 

with expression in the same tissues and at the same times in development (Visel et al. 

2009).  Additionally, many regulatory regions undergo rapid evolution and turnover 

(Wray 2007; Wray 2013), and these will be missed by our analysis.  Due to their 

different functions, we split the list of 193 feather related genes and their associated 

CNEEs into a structural set of 67 keratin genes and a patterning set of 126 non-keratin 

genes and analyzed these groups separately. 

An ancient genic toolkit and extended regulatory evolution are associated with 

feather origins.  The genic and regulatory components of the keratin and non-keratin 

sets show very different patterns across the 500My backbone of our tree, on the lineage 

leading from the common ancestor of vertebrates to the chicken in our tree (Figs. 1 and 

2, Supplementary Fig. 1).  The most ancient branch in our analysis, leading to the 

common ancestor of ray-finned fishes and other vertebrates, shows the strongest 

enrichment for the non-keratin feather genes (1.7 times expected), with smaller 

numbers of non-keratin feather genes arising on branches leading to tetrapods and less 

inclusive clades (Fig. 1A, Fig. 2).  No members of this non-keratin feather gene set are 

reconstructed to have arisen after the ancestor of birds and turtles.  Although ancient 

genes are more likely to be studied during chick development, the non-keratin genes in 

our study were even more ancient than we would expect taking into account this bias 

(Mann-Whitney U test; p < 0.022; Supplementary Figure 2). The inferred first 

appearance of non-keratin protein-coding regions that are involved, for example, in 

placode patterning and feather ontogeny in birds is consistent with these genes being 

part of an ancient developmental toolkit (Figs. 1 and 2). 
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 Surprisingly, the CNEEs associated with non-keratin feather related genes show 

the highest rate of origin not on the internode between the ancestral archosaur and 

birds, where they exhibit a 25% higher-than-expected rate of origination, but instead on 

the branch leading to amniotes, where they exhibit a rate of origination 60% higher than 

expected (Figs. 1 and 2, Supplementary Fig. 1).  The rate of origination for these 

CNEEs is greater than what would be expected from CNEEs uniformly distributed 

throughout the genome for 6 of the 8 branches along the lineage leading to chicken, 

suggesting a large amount of regulatory innovation over an extended time period (Figs. 

1A and 2). Thus, the non-keratin genic component of feather development arose deep in 

vertebrates and the greatest signal of regulatory innovation was coincident with the 

burst of phenotypic change associated with the transition to land.  Although information 

on the integument of the ancestral amniote remains exceptionally limited (Alibardi et al. 

2009; Alibardi 2012), the accumulation of CNEEs inferred to have occurred at this time 

indicates a key role for regulatory change during this transition and in the subsequent 

evolution of vertebrate integumentary diversity.  Consistent with this hypothesis, 32 

genes in our feather gene set are here identified as shared with those involved in the 

development of mammalian hair (Lowe et al. 2011) (hypergeometric distribution, p < 1e-

80; Supplementary Table 3) and as present in the amniote ancestor. Genes driving hair 

development have been previously shown to exhibit an increase in regulatory innovation 

on the branch leading to amniotes, followed by a peak on the branch leading to 

mammals and a decline more recently (Lowe et al. 2011).   

 Our analysis suggests that non-avian dinosaurs, as part of Archosauria, 

possessed the entirety of the known non-keratin protein-coding toolkit for making 
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feathers. Moreover, assuming a constant rate of genome-wide accumulation of CNEEs 

throughout vertebrates, we estimate that 86% of non-keratin feather gene CNEEs were 

also present in the archosaur ancestor. The CNEEs present in this ancestor may have 

less to do with feather origins but instead could be linked to the earlier amniote 

transition to land, with later, bird-specific CNEEs having feather-specific functions. 

These results are also consistent with new data on integumentary innovation and 

diversity in Archosauria: filamentous or bristle structures either originated once early in 

the clade or three or more times (Clarke 2013)	
  in pterosaurs (Kellner et al. 2010), 

ornithischian (Zheng et al. 2009; Godefroit et al. 2014) and theropod dinosaurs (Norell 

and Xu 2005). Thus, the genic and regulatory complement identified in the ancestral 

archosaur was either a flexible toolkit coopted in multiple origins of new structures 

including feathers, or indicates an ancient origin in that clade for filamentous 

integumentary structures, often called feather precursors, on some part of the body or 

stage in development more than 100 million years before the origin of pinnate feathers 

in dinosaurs.  

Limited role of protein evolution in feather origins. Our analysis detects the well-

known burst of duplication in β-keratin genes within Archosauria (Greenwold and 

Sawyer 2010; Li et al. 2013) on the branch leading to birds (Figs. 1B, 2). The larger 

peak for keratin innovation is comprised of 57 β-keratins arising as an expansion of a 

gene cluster on chicken chromosome 27 and 5 β-keratins from duplications on 

chromosome 2.  The small peak in the turtle-bird ancestor is due to the expansion of a 

β-keratin gene cluster on chromosome 25.  Both of these results are consistent with 
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previous studies of β-keratin evolution (Greenwold and Sawyer 2010; Li et al. 2013).	
   

However, this keratin burst constitutes the only, albeit substantial, signal of innovation at 

the protein level in pinnate feather origins.  Notably, there is little evidence for regulatory 

innovation in the vicinity of β-keratin genes.  We detected little additional cross-species 

constraint outside of the exonic regions in the keratin clusters than we would expect if 

CNEEs were randomly distributed in the genome.  We only detected 15 CNEEs 

neighboring feather-related keratins in the lineage leading to birds, suggesting that 

regulatory evolution near β-keratins is not exceptional.  Although the signature of 

CNEEs is likely complicated by a history of duplication and gene conversion in this 

multigene family, either the regulatory landscape around β−keratins does not appear 

noteworthy or their regulatory elements are under less severe constraint.  These data 

are consistent with the idea that the keratin component of feathers arose primarily as a 

result of genic innovations.  

 Aside from β-keratin evolution, protein evolution appears to play a limited role in 

pinnate feather origins. We searched for signals of positive selection with respect to 

amino acid substitutions. After Bonferroni correction, only 3 of the 126 non-keratin 

feather genes showed signatures of positive selection on the archosaurian branch 

leading to birds (Supplementary Table 2).  These results indicate that most non-keratin 

genes related to feather development exhibit regulatory, not protein-coding, innovations 

in the avian stem lineage, including living birds and non-avian dinosaurs, consistent with 

the hypothesis that regulatory innovations underlie adaptations in skin patterning and 

feather morphology.  
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Body size genes exhibit exceptional regulatory innovation in Dinosauria: Genes 

with an anomalously large number of regulatory elements arising in birds after their 

divergence from extant crocodilians may contribute to the origin of avian phenotypes.  A 

genome-wide survey of 1 Mb genomic windows revealed 23 segments of the chicken 

genome possessing anomalously high numbers of CNEEs arising on the branch leading 

to birds (Fig. 3a; corrected p < 0.01; Supplementary Table 4).  Although gene ontology 

analysis does not reveal significant enrichment for any functions for the set of genes 

near these innovation-rich segments, a number of these segments flank genes involved 

in body size, limb development, and integument (Fig. 3a).  The region showing the 

greatest enrichment for bird-specific CNEEs in the entire chicken genome, over 500 

percent more than expected (p	
  <	
  1-­‐53), is centered in a 400-kb gene desert with insulin-

like growth factor binding protein (IGFBP) 2 and 5 being the two closest genes (Fig 3b 

and c). IGFBP2 is expressed in the chick apical ectodermal ridge and at the tips of the 

growth plates in the wing bud, contains single nucleotide polymorphisms linked to 

phenotypic variation in the limbs of chickens (McQueeney and Dealy 2001; Li et al. 

2006), and lies in the signaling pathway of both body size and limb length in mammals 

and birds (Fisher et al. 2005; Sutter et al. 2007). IGFBP5 also plays important roles in 

limb development (McQueeney and Dealy 2001) and the reduction of body size (Salih et 

al. 2004). Its widespread expression during chick development (Antin et al. 2014) is 

consistent with a role for IGFBP5-associated regulatory elements in body size reduction. 

Body size and limb length are known to vary extensively across Dinosauria and have 

been proposed to play a key role in dinosaur evolutionary dynamics (Benson et al. 
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2014), with miniaturization indicated by the fossil record to have preceded the origin of 

flight in Paraves (Turner et al. 2007; Lee et al. 2014), and changes in limb scaling within 

Maniraptora and continuing into birds associated with the origin of flight (Xu et al. 2001). 

Thus, analysis of patterns of regulatory innovation offer the potential to link genome 

evolution to key shifts in shape and form occurring in deep time. 
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Figures (main text) 

Figure 1. Feather development genes are ancient whereas associated CNEEs 

peak in the amniote ancestor.  Evolutionary dynamics of a) non-keratin feather 

development genes and associated CNEEs (n = 126 genes) and b) keratin genes and 

associated CNEEs (n = 67 genes).  The black horizontal line indicates the null 

expectation of the number of new genes (comparison to all genes in the genome) or 

CNEEs (a uniform distribution throughout the genome).  Points above this line indicate 

lineages on which a higher-than-expected number of genes or CNEEs have arisen.  

Points on the X-axis correspond to the ancestors depicted in Fig. 2, with spacing 

proportional to divergence times as recorded in timetree.org (Hedges et al. 2006).  In b, 

the larger peak is comprised of β-keratins arising from expansions of gene clusters on 

chicken chromosomes 27 and 2.  The small peak in the turtle-bird ancestor is due to the 

expansion of a β-keratin gene cluster on chromosome 25.  Both of these results are 

consistent with previous studies of β-keratin evolution (Greenwold and Sawyer 2010; Li 

et al. 2013). 

 

Figure 2.  Major genomic events underlying the origin of feathers.  The colored 

backbone of the tree is comprised of three tracks: CNEEs, non-keratin feather genes 

(n=126), and keratin genes (n=67).  Rates of origination of these three genomic classes 

are indicated by the colors for each stem internode and track in the tree, with blue colors 

indicating low origination rates and red colors indicating high origination rates.  Key 

events at the level of coding regions (genes) and regulatory elements are indicated.  
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The colors of the silhouettes at right indicate the percent of the feather regulatory 

component present in the chicken genome inferred to have arisen in the ancestor of 

each indicated taxon.  For example, the fish are inferred to possess about 28% of the 

CNEEs associated with feather genes in chicken, whereas 86% of the observed chicken 

CNEEs are inferred to have arisen by the ancestral archosaur, including non-avian 

dinosaurs. 

 

Figure 3.  Identification of regions of the avian genome with signatures for 

exceptional regulatory innovation on the archosaur lineage that includes birds 

and other dinosaurs. a) A genome-wide plot of the density of conserved nonexonic 

elements (CNEEs) arising on the archosaurian branch leading to the avian ancestor.  

Red regions indicate those areas enriched compared to the distribution of CNEEs on 

other branches (gray line in ʻbʼ) and green squares indicate the 23 significant peaks of 

enrichment for bird-specific CNEEs relative to a uniform distribution throughout the 

genome.  We examined the closest upstream and closest downstream genes and for 

select peaks a flanking gene is indicated along with a proposed role in avian 

morphological evolution (key at top); regulatory innovation may also have played a role 

in earlier dinosaur-lineage evolutionary dynamics.  b) The densest region for bird-

specific CNEEs in the chicken genome is in a gene desert on chromosome 7 with 

IGFBP2 being the closest well-annotated refseq gene and IGFBP5 being the closest 

gene prediction. CNEE density on all branches other than the one leading to birds is 

indicated in grey.  c) UCSC Genome Browser shot of a CNEE-rich region in the vicinity 
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of IGFBP2 and IGFBP5, which function in limb development and body size regulation 

(see main text, Supplementary Table 4), showing CNEEs found only in birds (red boxes) 

or arising on deeper branches in the vertebrate tree (gray boxes).  Regions of aligning 

sequence for representatives of the 19 included taxa are in green. 
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