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Chapter 7

Modern Phylogenomics: Building Phylogenetic Trees
Using the Multispecies Coalescent Model

Liang Liu, Christian Anderson, Dennis Pearl, and Scott V. Edwards

Abstract

The multispecies coalescent (MSC) model provides a compelling framework for building phylogenetic trees
from multilocus DNA sequence data. The pure MSC is best thought of as a special case of so-called
“multispecies network coalescent” models, in which gene flow is allowed among branches of the tree,
whereas MSC methods assume there is no gene flow between diverging species. Early implementations of
the MSC, such as “parsimony” or “democratic vote” approaches to combining information from multiple
gene trees, as well as concatenation, in which DNA sequences from multiple gene trees are combined into a
single “supergene,” were quickly shown to be inconsistent in some regions of tree space, in so far as they
converged on the incorrect species tree as more gene trees and sequence data were accumulated. The
anomaly zone, a region of tree space in which the most frequent gene tree is different from the species tree,
is one such region where many so-called “coalescent” methods are inconsistent. Second-generation
implementations of the MSC employed Bayesian or likelihood models; these are consistent in all regions
of gene tree space, but Bayesian methods in particular are incapable of handling the large phylogenomic
data sets currently available. Two-step methods, such as MP-EST and ASTRAL, in which gene trees are first
estimated and then combined to estimate an overarching species tree, are currently popular in part because
they can handle large phylogenomic data sets. These methods are consistent in the anomaly zone but can
sometimes provide inappropriate measures of tree support or apportion error and signal in the data
inappropriately. MP-EST in particular employs a likelihood model which can be conveniently manipulated
to perform statistical tests of competing species trees, incorporating the likelihood of the collected gene
trees on each species tree in a likelihood ratio test. Such tests provide a useful alternative to the multilocus
bootstrap, which only indirectly tests the appropriateness of competing species trees. We illustrate these
tests and implementations of the MSC with examples and suggest that MSC methods are a useful class of
models effectively using information from multiple loci to build phylogenetic trees.

Key words Introgression, Hybridization, Coalescent, Recombination, Neutrality, Molecular
evolution

1 Introduction

The concept of a phylogeny or “species tree,” a bifurcating den-
drogram graphically depicting the relationships among a group
species, is one of the oldest and most powerful icons in all of
biology. After Charles Darwin sketched the first species tree
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(in Transmutation of Species, Notebook B, 1837), he remained
fascinated by the image for 22 years, eventually including a species
tree as the only figure in On the Origin of Species [1]. Though
species trees reached their aesthetic apogee with Ernst Haeckel’s
Tree of Life in 1886, the pursuit of ever-more scientifically accurate
trees has kept phylogenetics a vibrant discipline for the 150 years
since.

Because the direct evolution of species in the past is not observ-
able (not even in the fossil record), relationships among species are
often inferred by shared characteristics among extant taxa. Until the
1970s, this effort took place almost exclusively by using morpho-
logical characters. Although this approach had many successes, the
paucity of characters and the challenges of comparing species with
no obvious morphological homologies were persistent problems
[2, 3]. When molecular techniques were developed in the late
1960s, it soon became clear that the sheer volume of molecular
data that could be collected would represent a vast improvement.
When DNA sequences became widely available for a range of
species [4], molecular comparisons quickly became de rigueur
[5–8]. Nonetheless, it was recognized early on that molecular
phylogenies had their own suite of problems; the concept that not
all gene tree topologies would match the true species tree topology
(i.e., would not be speciodendric sensu Rosenberg [9]) was implicit
in early empirical allozyme and mitochondrial DNA studies
[10, 11]. However, it was generally assumed that the idiosyncratic
genealogical history of any one gene, as reconstructed from extant
mutations, was an acceptable approximation for the true history of
the species given the potentially overwhelming quantity and seduc-
tive utility of molecular data [12–15]. Indeed, this assumption is
still prevalent in the thinking of those who favor concatenation or
supermatrix approaches as a means of combining information from
multiple genes that may still differ in their genealogy from each
other and from the species tree [16, 17]. In the meantime, the term
“phylogeny” frequently became conflated with “gene tree,” the
entity produced by many of the leading phylogenetic packages of
the day. The term “species tree,” in use since the late 1970s to
emphasize the distinction between lineage histories and gene his-
tories (reviewed in [11, 18]), was only gradually acknowledged,
despite the fact that species trees are the rightful heirs to the term
“phylogeny” and better encapsulate the true goals of molecular and
morphological systematics [19].

1.1 Stopgap

Approaches to Gene

Tree Heterogeneity

By and large, the ensuing decades of molecular phylogenetics has
fulfilled much of its potential, revolutionizing taxonomies and
resolving conundrums previously considered intractable. However,
as the amount of genetic data per species becomes ever-more
voluminous, it has become clear that the conflicts between individ-
ual genes with each other and with the overarching species tree,
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both in topology and branch lengths, can have practical conse-
quences for phylogenetic analysis if not dealt with properly
[18–23]. At first, some researchers treated this phenomenon as
though it were an information problem: when working with only
a few mutations, you were bound to occasionally get unlucky and
sequence a gene whose random signal of evolution did not match
that of the taxa being studied. The reasoning was surely more
and/or longer sequences would fix that problem and cause gene
trees to converge [16]. However, as more genes were sequenced,
and as the properties of gene lineages within populations were
studied in detail [24, 25], the twin realities of gene tree heteroge-
neity and “incomplete lineage sorting” [11] (ILS) became clear
(Figs. 1 and 2). The probability of an event such as incomplete
lineage sorting, which if considered alone would lead to inferring
the wrong species tree, was worked out theoretically for the four
allele/two species case first [26], followed by the three allele/three
species case [7, 13] and more general cases [12, 27]. Pamilo and
Nei [12] were among those that proposed that the solution was to
simply acquire more gene sequences, after which the central ten-
dency of this gene set would point to the correct relationships, a
“democratic vote” method, where each gene was allowed to pro-
pose its own tree, and the topology with the most “votes” was
declared the winner and therefore the true phylogeny. Though
generally true for three-species case, it can sometimes produce the
wrong topology with four or more species [28]. In fact, we now
know that with four or more species, there is an “anomaly zone” for
species trees with short branch lengths as measured in coalescence
units, in which the addition of more genes for sampled taxa is
guaranteed to lead to the wrong species tree topology for the
democratic vote method [29, 30]. (Coalescent time units, equiva-
lent to t/Ne where t is the number of generations since divergence
and Ne is the effective population size of the lineage, are a conve-
nient unit for discussions of gene tree/species tree heterogeneity.
For a clear explanation, see Box 2 of Degnan and Rosenberg [28].)
Such anomaly zones may be rare empirically [31], but empirical
examples are emerging [32, 33], and even the theoretical possibility
remains disconcerting. In addition, because the number of possible
tree topologies increases as the double factorial of the number of
tips, for species trees with more than four tips, a very large number
of genes are required to determine which gene tree is in fact the
most frequent. Advanced consensus methods [34] can circumvent
some of the problems of the democratic vote by using novel assem-
bly methods, such as rooted triple consensus [35], greedy consen-
sus [36], or supertree methods [37]. However, although such
methods suffer from lack of a biological model motivating the
method of consensus, approaches such as that proposed by Steel
and Rodrigo [38] might help approximate the dynamics of
biological models while allowing for faster and more flexible exten-
sions and should be further developed.
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The second empirical approach to the problem of conflicting
gene trees was to bypass it altogether. Concatenation methods
appended the sequence of one gene to that of the next, to create
long alignments or supermatrices [39], a technique that in some
situations was superior to standard consensus methods in resolving
discordance or achieving statistical consistency [40]. But some
researchers, including those who questioned the “total-evidence”

Set of 9 Gene Trees

5k gen

Superimposed Gene Trees

−3000 −2500 −2000 −1500 −1000 −500 0

A
A
A
A
B
B
C
C
C
D D

C

B

A
Inferred Species Tree

Fig. 1 An example showing the utility of multiple gene trees in producing species tree topologies. (a) Nine
unlinked loci are simulated (or inferred without error) from a species group with substantial amounts of
incomplete lineage sorting. Note that no single gene recovers the correct relationship between clades.
Furthermore, despite identical conditions for all nine simulations, no two genes agree on the correct topology,
let alone the correct divergence times. (b) Superimposing the nine gene trees on top of each other clarifies the
relationships. It can be (correctly) inferred that the true tree is perfectly ordered, with (ABC) diverging from D
about 1500 generations ago, the (AB)-C split occurring at 800, and A diverging from B about 600 generations
ago. Also, the amount of crossbreeding within the recently diverged taxa implies (correctly) that C has the
effective smallest population size
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approach to systematics (e.g., [41]), advocated against concatena-
tion when, for whatever reason, gene trees appeared to conflict with
one another. One problem with the concatenation approach was
that it assumed full linkage across the supermatrix, a situation that
would obviously not be the case if genes were on different chromo-
somes. Even when the lineage lengths in a species tree are long in
coalescent units, such that gene tree topologies are congruent, the
branch lengths of trees of genes on different chromosomes will
differ subtly from one another due to the stochasticity of the
coalescent process. The early implementations of this method also
assumed the same distribution of mutation rates across the
sequence, which was clearly not the case if the matrix included
coding and noncoding regions. Like democratic vote methods,
concatenation of many genes was sometimes defended as sufficient
to override the conflicting signal across genes [42, 43], despite
widespread acknowledgment that gene tree heterogeneity is ubiq-
uitous and that concatenation can sometimes give the wrong
answer, especially although not exclusively in the anomaly zone
[44, 45].

Concatenation as a method of combining phylogenomic data
still remains popular by default [16, 46], particularly among phylo-
genetic studies of higher taxa where incomplete lineage sorting is
assumed to be rare. However, this logic suffers from two flaws
frequently seen in the literature. First, “deep” phylogenetic studies
among higher taxa are no more immune to the problems of ILS

A B C D A B C D 

A B C D A B C D A B C D A B C D A B C D A B C D 

Deep coalescence Branch length heterogeneity 

species tree 

gene trees 

Fig. 2 The relationship between gene trees and species trees. Lines within the
species trees indicate gene lineages. Simplified gene trees are shown below
each species tree. Whereas gene trees on the left vary due to deep coalescence,
gene trees on the right are topologically concordant but vary slightly in branch
lengths due to the coalescent. Modified with permission from [19]
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than are studies among closely related species, because it is the
length of a given branch, not its depth in the tree, that is relevant
to probability of gene tree discordance [28]. Detecting such ILS
and ruling out gene tree congruence will indeed be more challeng-
ing in deep phylogenomic studies, but it should not be assumed
that ILS will be less prevalent at deep scales than at shallow scales.
Second, current implementations of concatenation represent only
one way of species tree construction in which each gene is forced to
have the same topology. The real distinction between concatena-
tion and coalescent models is not the presence or absence of ILS
but rather the possibility of conditional independence of gene trees
as mediated by recombination between genes [47]. Even if all gene
trees in an analysis are topologically identical, physically connecting
different genes in a single supermatrix does not capture variation in
branch lengths that recombination will allow in nature. More effort
should be devoted to “supermatrix-like” methods that constrain
gene trees to the same topology but allow recombination between
genes and conditional independence of branch lengths, since these
qualities will influence how signal is accumulated as more genes are
added [47]. A final problem with concatenation is that, in a strict
sense, concatenation also does not generate species trees, in so far as
the method treats all nucleotides as if they were part of a single
non-recombining gene, and thus does not distinguish between
gene and species trees [19]. In the end, concatenation is best
thought of as a special case of more general models of phylogenetic
inference that acknowledge gene tree heterogeneity and condi-
tional independence of genes. One such model is the multispecies
coalescent model [23, 28, 48]. It is this model that provides the
basis for a recent flurry of promising methods that permit efficient
and consistent estimation of species trees under a variety of
conditions.

2 The Multispecies Coalescent Model

A plausible probabilistic model for analyzing multilocus sequences
should involve not only the phylogenetic relationship of species
(species tree) but also the genealogical history of each gene (gene
tree) and allow different genes to have different histories. Unlike
concatenation, such a multispecies coalescent model (MSC)
explains the evolutionary history of multilocus sequences through
two levels of biological hierarchy, the gene tree and the species tree,
rather than just one [23, 49]. Models acknowledging these two
levels require an explicit description of how sequences evolve on
gene trees, the traditional likelihood equation of Felsenstein [50]
and others, as well as how gene trees evolve in the species tree, the
likelihood for which was first described by Rannala and Yang
[48]. With a few exceptions (described below), the genealogical
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relationship (gene tree) of neutral alleles can be simply depicted by a
coalescence process in which lineages randomly coalesce with each
other backward in time. The MSC is a simple application of the
single population coalescent model to each branch in a species tree
[28]. It holds the standard assumptions found in many neutral
coalescent models: no natural selection or gene flow among popu-
lations, no recombination within loci but free recombination
between loci, random mating and a Wright-Fisher model of inheri-
tance down each branch of the species tree. Despite these seemingly
oversimplified assumptions, the pure coalescent model is funda-
mental in explaining the gene tree-species tree relationship because
it forms a baseline for incorporating additional evolutionary forces
on top of random drift [28, 49]. More importantly, the pure
coalescent model provides an analytic tool to detect the evolution-
ary forces responsible for the deviation of the observed data
(molecular sequences) from those expected from the model.

The coalescent process works, in effect, by randomly choosing
ancestors with replacement from the population backward through
time for each sequence in the original sample. Eventually, two of
these lineages will share a common ancestor, and the lineages are
said to “coalesce.” The process continues until all lineages coalesce
at the most recent common ancestor (MRCA). Multispecies coa-
lescence works the same way but places constraints on how recently
the coalescences occur, corresponding to the species’ divergence
times. Translating this model into computer algorithms for infer-
ring species trees has led to a plethora of models [51–55], some of
which first build gene trees by traditional methods and then com-
bine them into a species tree with the highest likelihood or other
criteria (“two-step” methods, e.g., [56] or [57]), others of which,
particularly Bayesian methods [58–60], simultaneously estimate
gene trees and species tree. In general for likelihood or Bayesian
approaches, a species tree has been proposed, and the likelihood of
each gene tree is evaluated using the MSC, with or without various
priors, to evaluate the likelihood of the data (DNA sequences in the
case of Bayesian methods or gene trees in the case of likelihood
methods like MP-EST [56]) given the species tree or the posterior
probability of the species tree. In this way, traditional multispecies
coalescent methods are the converse of consensus methods; rather
than each locus proposing a potentially divergent species tree, a
common species tree is assumed and evaluated, given the some-
times divergent patterns observed among multiple loci.

A number of implementations of this idea have been developed
(reviewed by Edwards [19, 54]). Several “two-step” packages are
available for moving from independently built gene trees to species
trees, including minimization of deep coalescence [61], STEM
[62], JIST [63], GLASS [64], STAR, STEAC [65], NJst [66],
and ASTRAL [57, 67]. Three methods to date utilize “one-step”
Bayesian methods to infer gene trees and the species tree, with the
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input data being DNA sequences: BEST [58, 68, 69], *BEAST2
[59], and a new model (A00) in the Bayesian Phylogenetics and
Phylogeography (bpp) package [70–72]. An additional “one-step”
method, SVD Quartets [73], derives species trees directly from
aligned, unlinked single-nucleotide polymorphisms using the
method of invariants in a coalescent framework. Species tree meth-
ods exhibit a number of attractive advantages over concatenation
methods in terms of performance. These advantages are not
restricted to the anomaly zone, occur across broad regions of tree
space, and include less susceptibility to long-branch attraction [74]
and missing data [75]. Another attractive aspect of species tree
methods and multispecies coalescent models is that they deliver
more appropriate estimated levels of confidence that are more
evenly spread across genes and appear to be less susceptible to the
inflation of posterior probabilities that was early on attributed to
Bayesian analyses (e.g., [76, 77]) but may also be due to model
misspecification due to concatenation [53]. Bayesian methods are
generally agreed to be the most efficient and accurate, capturing all
details of the MSC model seamlessly [52]. However, one drawback
is that the estimation of larger numbers of parameters (population
sizes and divergence times in addition to topologies) can slow
computation, may not be relevant in some situations [78], and is
generally not possible with the large data sets that are routinely seen
today in phylogenomics [59]. Thus far, two-step methods such as
ASTRAL, STAR, NJst, and MP-EST have proven the most widely
used for large-scale phylogenomic studies, such as the Avian Phy-
logenomics Project [79] and large-scale phylogenomics of fish [80]
and plants [81].

2.1 Sources of Gene

Tree/Species Tree

Discordance and

Violations of the

Multispecies

Coalescent Model

2.1.1 Population

Processes

The “standard” and most common reason why gene trees are not
speciodendritic is incomplete lineage sorting, i.e., lineages have not
yet been reproductively isolated for long enough for drift to cause
complete genetic divergence in the form of reciprocal monophyly
of gene trees ([82]; Figs. 1 and 2). This source of gene tree
heterogeneity is guaranteed to be ubiquitous, if only because it
arises from the finite size populations of all species that have ever
come into existence. Almost all the techniques and software
packages discussed above are designed to approximate uncertainties
in species tree topology arising from this phenomenon.

Delimitation of Species and

Diverging Lineages

For recent divergences, the definition of “species” can become
problematic for species tree methods [63], and the challenge of
delimiting species has, if anything, increased now that the overly
conservative strictures of gene tree monophyly as a delimiter of
species have been mostly abandoned [82]. This fundamental issue
in a phylogenetic study—whether the extent of divergence among
lineages warrants species status—has not gone away in the genomic
era. However, traditional species tree methods using the MSC need
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not use “good” species as OTUs; they will work perfectly well on
lineages that have recently diverged, so long as they have ceased
exchanging genes. The key issue is not whether the OTUs in
species tree analyses are in fact species but rather whether they
have ceased exchanging genes, which has been shown to compro-
mise traditional MSC methods [83, 84] (see below).

The problem of species delimitation may ultimately be solved
by data other than genetics, and today few species concepts use
strictly genetic criteria [85]. Some have suggested that the line
between a population-level difference and a species-level difference
can be drawn empirically and with consistency in well-studied taxa
such as birds, using morphological, environmental, and behavioral
data simultaneously [86]. Thus, there is some hope that species
delimitation can be performed rigorously a priori in many cases.
Researchers who opt for delimiting species primarily with molecu-
lar data have a wide array of techniques and prior examples available
to them, although not all without controversy [71, 87–93]. Recent
progress in species delimitation is motivated by the conceptual
transition from “biological/reproductive isolation species” to the
“lineage species concept,” which defines species not in terms of
monophyly of gene lineages but as population lineage segments in
the species tree [93]. Under that expanded concept, boundaries of
species (i.e., lineages in the species tree) can be facilitated by
collection and analysis of gene trees in the framework of the
multispecies coalescent model [72]. The recent suggestion that
coalescent species delimitation methods define only structure but
not species [90] was, in our view, already well-established, with
confusion stemming largely from the term “species delimitation,”
as opposed to “delimitation of populations between which gene
flow has ceased.”

Gene Flow There are a number of other situations in which the assumptions
of the coalescent are violated. MSC models involve a series of
isolation events unaccompanied by gene flow. In this regard,
they are like the isolation-migration models of phylogeography
[94, 95] but without the migration. The assumption of no gene
flow naturally restricts their utility, but gene flow of course com-
promises other methods of phylogenetic inference, including con-
catenation methods, as well. Additionally, situations in which gene
flow yields a prominent molecular signal often are detectable
primarily among very closely related species in the realm of phy-
logeography [96]. If some substantial gene flow continues
between species after divergence, then the multispecies coalescent
can quickly destabilize, especially for a small number of loci and as
the rate of genetic introgression increases (Fig. 6 in [87, 97–99]).
We recommend model comparison algorithms like PHRAPL [87]
for determining whether a given data set conforms to the assump-
tions of the MSC.
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2.1.2 Molecular

Processes

In addition to species delimitation and gene flow, there are at least
three mechanisms that generate discordance on the molecular level
(Fig. 3). These include horizontal gene transfer (HGT), which can
pose a serious risk to phylogenetic analysis; gene duplication, whose
risks can be avoided by certain models; and natural selection, which
generally poses no direct threat but, depending on its mode of
action and consequences for DNA and protein sequences, can be
the most challenging of all.

Horizontal Gene Transfer

A B C D

A A B A BB

A B C D A B C D

A B C D

Gene Duplication

Copy 2
Copy 1

Convergent Evolution
Mutation

TRUE HISTORY INFERRED
HISTORY

Fig. 3 Three examples of gene histories that depart from the standard
multispecies coalescent model. (a) A duplication event that precedes a
speciation event can lead to incorrect inference of divergence times in the
species tree if copy 1 is compared to copy 2. This can be particularly difficult
if one of the gene copies has been lost or not sequenced by the researcher. (b)
Convergent evolution can occur at the molecular level, for example, in certain
genes under strong natural selection or highly biased mutational processes.
These processes will tend to bring together distantly related taxa in the
phylogenetic tree and are likely to be given additional false support by
morphological data. (c) Horizontal gene transfer causes difficulties in some
current species tree methods, because it establishes a spurious lower bound
to divergence times. Though rare in eukaryotes, it is by no means unknown and
is likely to become a more difficult problem in the future when species trees are
based on tens of thousands of loci
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Horizontal Gene Transfer HGT is now known to be so widespread across the Tree of Life,
especially in prokaryotes, that some have suggested a web of life
may be a more appropriate paradigm for phylogenetic change
[100–102]. Growing evidence shows that even eukaryotic gen-
omes contain substantial amounts of “uploaded” genetic material
from bacteria, archaea, viruses, and even fellow eukaryotes
[103–105]. Even though effective techniques are not yet widely
available for detecting HGT in eukaryotes, enough individual cases
have been “accidentally” discovered that researchers have given up
trying to list them all [103].

The implications of HGT for species tree construction vary
depending on the method used. For example, following the stan-
dard assumption in coalescent theory that allelic divergences must
occur earlier in time than the divergences of species harboring those
alleles, some species tree techniques [48, 58], as well as classical
approaches (e.g., [13]), assume that the gene tree exhibiting the
most recent divergence between taxon A and taxon B establishes a
hard upper limit on the divergence time of those species in the
species tree. For small sets of genes in taxa where HGT is rare, a
researcher would need to be quite unlucky to choose a horizontally
transferred gene for analysis. However, as the genomic era
advances, it becomes more likely that at least one of the thousands
of genes studied will have been transferred horizontally and thus
establish a spurious upper bound for clade divergence at the species
level. When selective introgression of genes from one species to
another is considered, this number of genes coalescing recently
between species will increase [106]. Although HGT is clearly a
problem for some current methodologies, if transferred genes can
first be identified, then they could be extremely useful as genomic
markers for monophyletic groups that have inherited such genes
and would otherwise be difficult to resolve [107]. However, for
other species tree methods that calculate averages of coalescence
times, such as STAR [65], HGT events will have less of an impact.
Liu et al. [56] examined the effect of HGT on the pseudo-
likelihood method MP-EST and predicted that, mathematically,
species tree branch lengths may be biased by HGT but that topol-
ogies were fairly robust. Davidson et al. [108] found that quartet-
based methods, such as ASTRAL-II, were fairly robust to HGT in
the presence of ILS. Removal of genes suspected to be transferred
via HGT prior to species tree analysis would be warranted; how-
ever, some methods to detect such events rely both on having the
true species tree already in hand and also on the absence of other
mechanisms causing gene tree discordance [109–112]. Recent
work aims to incorporate HGT into other mechanisms of gene
tree incongruence (reviewed in [113]); how much we need to
invest in such synthetic methods will likely depend on the preva-
lence of HGT in particular taxonomic groups.
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Gene Duplication Gene duplication presents another violation of the basic MSC
model (Fig. 3); like HGT, its potential problems are worst when
they go unrecognized [49]. Imagine a taxon where a gene of
interest duplicated 10 Mya into copy α and copy β; the taxon then
split 5 Mya into species 1 and 2. A researcher investigating the
daughter species would therefore sequence four orthologous
genes, with the potential to compare α1 to β2 and β1 to α2 and
thus generate two gene trees where the estimated split time was
10 Mya, rather than 5 Mya. Such a situation will be easily recog-
nized if copy α and β have diverged sufficiently by the time of their
duplication, and a number of methods of coalescent analysis have
incorporated gene duplication (e.g., [114, 115]; reviewed in
[116]). Additionally, failure to recognize the situation may not
have drastic consequences for phylogenetic analysis if the paralogs
have coalesced very recently or are species-specific, in which case the
estimated gene coalescence would be approximately correct no
matter which comparison was made. However, if one of the copies
has been lost and only one of the remaining copies is sequenced,
then the chances of inferring an inappropriately long period of
genetic isolation are larger and will increase as the size of the family
of paralogs increases. Assessing paralogs in phylogenomic data is a
major challenge, particularly in groups like plants and fish, and a
growing number of dedicated methods ([117]; assessed in [118])
or filtering protocols [119] for doing so exist. This problem will
tend to overestimate gene coalescence times, and some species tree
methods depend on minimum isolation times among a large set of
genes. These deep coalescences might spuriously increase inferred
ancestral population sizes. A systematic search for biases incurred by
species tree methods due to gene duplication is needed.

Natural Selection Natural selection causes yet another violation of the multispecies
coalescent model. Selection can cause serious problems in some
cases, although in other circumstances it is predicted not to cause
problems of phylogenetic analysis [47, 120]. The usual stabilizing
selection can be helpful to taxonomists working at high levels
because it slows the substitution rate; likewise selective sweeps,
directional selection, and genetic surfing [121] tend to clarify
phylogenetic relationships by accelerating reciprocal monophyly
for genes in rapidly diverging clades. However, challenges to phy-
logenetic inference are posed by any evolutionary force that may
bias the reconstruction of gene trees, including convergent neutral
mutations (homoplasy), balancing selection, and selection-driven
convergent evolution (e.g., [122]). Balancing selection tends to
preserve beneficial alleles at a gene for long periods of time and is
probably the most insidious form of selection with respect to
accurately reconstructing gene trees and species trees.
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2.2 More About

Violations and Model

Fit of the Multispecies

Coalescent Model

Many of the instances of violations of the coalescent model will
occur at individual genes and usually will not dominate the signal
of the entire suite of genes sampled for phylogenetic analysis. Reid
et al. [123] conducted one of the few tests of the fit of the MSC to
multilocus phylogenetic data. Although the title of their article
suggests that the MSC overall provides a “poor fit” to empirical
data, we suggest that their results provide a more hopeful picture.
The most important thing is that they investigated the fit of the
MSC to individual loci in phylogenetic data sets and were able to
identify loci that failed to fit the MSC. They were less successful at
identifying the causes of departure from theMSC for individual loci.

More common but still rare are efforts to determine which
models of phylogenetic inference, the MSC or concatenation, pro-
vide a better fit to empirical phylogenomic data. Edwards et al.
[124] and Liu and Pearl [58] both used the Bayesian species tree
method BEST [68] to ask using Bayes factors whether the MSC or
concatenation fits empirical data sets better. Uniformly, they found
that the MSC fit empirical data sets better than concatenation,
often by a large margin. However, further work in this area is still
needed. Most discussions in the literature have focused on the
perceived failings or violations of the MSC by empirical data
sets—such as evidence for recombination within loci—even when
such failings or assumptions also apply to concatenation [47].
Given that all models are approximations of reality, a better focus
would be to ask which model better fits empirical data sets better.
The limited research that has been done suggests overwhelmingly
that the MSC provides a better fit to empirical data sets than
concatenation.

Are there better models for phylogenomics than the MSC?
Depending on the data set, almost surely there are (Fig. 4). Several
authors working with phylogenomic data sets have suggested that
gene flow is detectable, even among lineages that diverged a long
time ago (e.g., [129, 130]). The increasing number of reports of
hybridization and introgression among phenotypically distinct spe-
cies suggests that hybridization may be a typical component of
speciation and that even phylogenetic models can be improved by
incorporating such reticulation (e.g., [47, 106, 131]). The pure
MSC is best thought of as a special case of so-called “multispecies
network coalescent” models, or MSNC [127, 132–134] (Fig. 4), in
which gene flow connects some branches of the species tree. In the
end, empiricists will need to decide what level of model fit they are
willing to tolerate and which software packages can accommodate
the large data sets that are now routine in phylogenomics.

2.2.1 Phylogenetic

Outlier Loci

Genes whose phylogenetic signal differs significantly from that of
the remainder of data set can be thought of as phylogenetic outliers.
These loci are conceptually similar to outliers in population genet-
ics, which have been the focus of many studies (reviewed in
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[135–137]). However, there has been little work in detecting
phylogenomic outliers. Much attention has been paid to particular
sites in a data set that differ from the majority and therefore exhibit
homoplasy or incongruence with the rest of the data set
[76, 138]. The sources of such incongruence are many and can
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Fig. 4 Diversity of phylogeographic models. Species trees estimated by the
multispecies coalescent are naturally related to previous phylogeographic mod-
els by their shared demographic parameters, usually measured in units of
mutation rate or substitutions per site (μ), including genetic diversity or effective
population size (4Nμ, where N¼ effective population size; gene flowM/μ, where
M ¼ the scaled migration rate; 4Nm, where m is the number of migrants per
generation; and divergence time τ ¼ μt, where t is the divergence time in
generations). (a) Equilibrium migration models as envisioned by early versions of
the software MIGRATE [125]. (b) Isolation-migration models envisioned by Hey
and coworkers [48, 95, 126]. Subscript A indicates ancestral population size. (c)
Species tree models estimated by the multispecies coalescent [28]. (d) Multi-
species network coalescent models or phylogenetic network models including
divergence and gene flow [127, 128]
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include mutational processes (e.g., gene duplication), HGT, as well
homoplasy (e.g., [139, 140]). Incongruence of particular sites, or
entire loci, may also be due to technical issues such as contamina-
tion, misassembly, mistaken paralogy, annotation mistakes, and
alignment errors (e.g., [119]). Here, in an analogy with work in
population genetics, we will focus primarily on entire loci that
deviate from the expected distribution governed by neutral pro-
cesses due to natural selection. Understanding the distribution of
gene tree topologies expected under the neutral multispecies coa-
lescent [25] is a good starting point for identifying loci that may be
targets of natural selection.

2.2.2 Genomic Signals of

Phylogenetic Outliers

When faced with a surprising or nonconvergent species tree, one
possibility is that an unusual gene tree is to blame. Though techni-
ques for dealing with violations of the coalescent model are in their
infancy, researchers do have a few options. Below we list several
ideas, some borrowed from classical phylogenetics or from meth-
ods used in bioinformatics. It is likely that the several tests con-
structed to detect phylogenetic outliers in classical phylogenetics
can be extended slightly to incorporate the additional variation
among genes expected due to the coalescent process. Of course,
with larger data sets, at least with some coalescent methods, single
anomalous genes may have little effect on the resulting species tree,
particularly in species tree methods utilizing summary statistics
[65]. However, as pointed out above, species tree methods such
as BEST that relies on “hard” boundaries for the species tree by
individual genes could be derailed due to the anomalous behavior
of even a single gene.

Jackknifing: A straightforward approach to detecting phyloge-
netic outliers under the multispecies coalescent model is to rerun
the analysis n times, where n is the number of loci in the study,
leaving one locus out each time. An outlier can then be identified if
the analysis that does not include that gene differs from the remain-
ing analyses in which that gene is included. This approach has been
applied successfully in fruit flies by Wong et al. [21], who consid-
ered their problem resolved when the elimination of one of the ten
genes unambiguously resolved a polytomy. There may be other
metrics of success that are more robust or sensitive or do not
depend as strongly on a priori beliefs about the relationships
among taxa. Because some duplications or horizontal transfers
may affect only one taxon, whole-tree topology summary statistics
are unlikely to be sensitive enough to detect recent events. How-
ever, the cophenetic distance of each taxon to its nearest neighbor
in the complete species tree could be compared across jackknife
results. This procedure will produce a distribution of “typical”
distances, and significance can therefore be assigned to highly
divergent results. The drawback to such an approach is the
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computational demand. Species tree analyses on their own can be
extremely time consuming to run even once, so jackknifing
may prove intractable for studies involving many species and loci
(see ref. 141).

2.2.3 Simulation

Approaches to Detecting

Phylogenetic Outliers

Simulating gene trees from a species tree is another method for
identifying gene trees that differ from the majority of loci in the
data set. Several species tree methods yield estimate of the phylog-
eny that include branch lengths in coalescent units [56, 57, 70],
which are required to simulate gene trees from a species tree.
Branch lengths in the estimated species tree can be decomposed
into a number of substitutions per site and an estimate of θ ¼ 4Nμ
that are compatible with the original branch length in coalescent
units. For example, using any number of algorithms, including
maximum likelihood or Bayesian methods, the length of species
tree branch lengths in substitutions per site can be approximated by
fitting the concatenated alignment of genes to the estimated species
tree topology, yielding a tree with the same topology but branch
lengths in substitutions per site (μt, where t is the time span of the
branch in either generations or years). With these branch lengths in
hand, estimates of θ can then be applied to each branch so that the
original coalescent units t/2N � μt/θ from the species tree are
retained. Care needs to be taken to preserve the appropriate ploidy
units when simulating gene trees from an estimated species tree.
Packages such as MP-EST yield estimates of species tree branch
lengths in coalescent units of 4N generations, appropriate for
diploids, whereas packages such as Phybase [142] simulate gene
trees from a species tree in estimates of 2N units, appropriate for
haploids. Another issue that is important to be aware of is the
distinction between gene coalescence times and species tree branch
lengths [143, 144]. Whereas species tree branch lengths are esti-
mates of lineage or population branch lengths in the species tree,
the DNA sequence alignment that is fitted to the species tree will
yield branch lengths reflecting the coalescence time of genes in
ancestral species. This discrepancy occurs because gene coalescence
times by necessity predate and record a more ancient event than do
species divergence times. The discrepancy may represent a small
fraction of the branch length if species divergence times are large,
but Angelis and dos Reis [143] have suggested that the discrepancy
can be quite large even in comparisons of distantly related species,
such as exemplars of mammalian orders. There is a great need for
methods of molecular dating and combining fossils and DNA data
that distinguish between gene coalescence times and speciation
times, the latter of which is usually of primary interest.

Once the branch lengths of the species tree are prepared for
simulation, gene trees can be simulated using a number of packages
(Phybase, [142]; TreeSim, [145]; CoMus, [146]). Even packages
traditionally used in phylogeography can be used to simulated gene
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trees on species trees, given the close relationship between species
trees and phylogeographic models like isolation migration
[147, 148]. One can then compare the distribution of gene tree
topologies and branch lengths observed in one’s data set with those
simulated under the neutral coalescent model. A common
approach is to calculate the distribution of Robinson-Foulds
[149] distances among simulated gene trees and compare these to
those observed in the original data set. Such approaches have been
used to determine if a data set is consistent with the MSC or the
percent of the observed gene tree variation that is explained by the
MSC. Other statistics, such as the similarity in number of minority
gene tree triplets produced by a given species tree at each node, can
also be compared to the observed distribution. Song et al. [150]
used coalescent simulations using Phybase to propose that theMSC
could explain a large (>75%) fraction of the observed gene tree
variation in a mammalian data set. Such simulations assume that the
gene tree variation observed is biological in origin and not due to
errors in reconstruction. They also noted that the near equivalence
in frequency of minority triplets in gene trees at various nodes in the
mammal tree suggested broad applicability of the neutral coalescent
without gene flow or other complicating factors. Still, many papers
observe some level of departure of the patterns in the observed data
set from those expected under simulation. Usually the source of
this departure is unknown. Natural selection or any other force
such as HGT or anomalous mutation might be culprits in these
cases. Heled et al. [151] proposed a simulation regime that incor-
porates gene flow between species and thus can be used to test for
the effects of migration on gene trees and species tree estimation.

To detect possible phylogenetic outliers, Edwards et al. [152]
applied a recently proposed method of detecting gene tree outliers,
KDEtrees [153], to a series of phylogenomic data sets. KDEtrees
uses the kernel density distribution of gene tree distances to esti-
mate the 95% confidence limits on gene tree topologies in a given
data set. Surprisingly, using default parameters, Edwards et al.
[152] could not detect a higher-than-expected number of gene
tree outliers in any data set, despite the fact that the data sets in
several cases contained hundreds of loci. No data set possessed
more than the expected 5% of outliers given the test implemented
in KDEtrees. Clearly further work is needed to understand the pros
and cons of various tests of phylogenetic outliers. For the time
being, we can note the robustness of various species tree methods
to phylogenetic outliers. One attractive prospect of algorithms for
species tree construction that use summary statistics, such as STAR
and STEAC, is that these methods are powerful and fast, yet they
appear less susceptible to error due to deviations of single genes
from neutral expectations. These methods do not utilize all the
information in the data and hence can be less efficient than Bayesian
or likelihood methods [52], yet they perform well with moderate
amounts of gene tree outliers due to processes like HGT.
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3 Hypothesis Testing Using the Multispecies Coalescent Model

Hypothesis testing is a cornerstone of phylogenetic analysis but has
received little attention in the context of the MSC (see ref. 154).
Bayesian species tree inference [58, 59, 68–70] provides perhaps
the most seamless approach to hypothesis testing. One can rela-
tively easily assess the fit of the collected data to alternative tree
topologies and compare the fit using Bayes factors or other
approaches. One can also assess the fit of various models of analysis
to the collected data [155]. Liu and Pearl [58] and Edwards et al.
[124] used Bayes factors to determine whether concatenation or
the MSC was a more appropriate model for several data sets; in all
cases tested thus far, the MSC provides a far better fit to multilocus
data (BF > 10) than does concatenation, in which all gene trees
among loci are identical. Further work is needed to apply Bayes
factors and likelihood ratio tests to multilocus data.

The bootstrap, introduced to phylogenetics by Felsenstein
[156], is the most common statistic applied to phylogenetic trees
[157]. In the era of multilocus phylogenetics, the “multilocus
bootstrap” of Seo [158] has been recommended as a more suitable
approach to assessing confidence limits than the traditional boot-
strap. In the traditional bootstrap, sites within a locus, or a series of
concatenated loci, are resampled with replacement to create pseu-
domatrices, which are then subjected to phylogenetic analysis, after
which a majority rule consensus tree is usually made. By contrast, in
the multilocus bootstrap, sites within loci and the loci themselves
are resampled with replacement. In the context of the MSC,
resampled pseudomatrices of the same number of loci as the origi-
nal data set, which may contain duplicates of specific loci due to the
random nature of the bootstrap, are then made into gene trees,
from which a species tree can be made. The bootstrap and various
other measures of branch-specific support [159] have been pro-
posed as a means of assessing confidence in species trees made using
the multilocus coalescent. Care should be taken in the comparison
of different studies using different measures of support, since not all
measures can be directly compared to one another. For example, as
pointed out by Liu et al. [160], the measure of posterior support
for ASTRAL trees proposed by Sayyari andMirarab [159] is not the
same as traditional bootstrap supports, and we do not yet know
how they will scale under different conditions compared to the
bootstrap. Edwards [161] summarized knowledge about the use
of phylogenomic subsampling, in which data sets of increasing size
or signal are analyzed so as to understand the stability and speed of
approach to certainty of phylogenetic estimates under theMSC and
under concatenation. He found that MSC methods tended to
approach phylogenomic certainty more smoothly and monotoni-
cally than do concatenation methods, which jump around errati-
cally in their certainty for sometimes conflicting topologies,
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especially when sampling smaller numbers of genes. Although we
cannot simply translate many conclusions from the gene tree era of
phylogenetics to the MSC era—for example, contrary to gene tree
conclusions, it is not clear for MSC models that more taxa are
always better than more loci [74]—many of these discussions
about hypothesis testing echo early comparisons of posterior prob-
abilities and bootstrap proportions used in the gene tree era of
phylogenetics.

The bootstrap has always provided a means of hypothesis test-
ing that is very indirect with respect to comparing alternative
phylogenetic hypotheses. Aside from the tests allowed by Bayesian
approaches, there have been few discussions of testing of alternative
phylogenetic trees in the era of the multispecies coalescent. In this
regard, the pseudo-likelihood model provided by MP-EST [56]
provides a convenient framework for hypothesis testing using spe-
cies trees. This framework is not available in most other species tree
methods, including ASTRAL, STAR, and STEAC, since these
methods do not employ a likelihood model. MP-EST takes advan-
tage of the likelihood model of Rannala and Yang [48] to assess the
fit of a species tree to a collection of gene trees and can thus be used
to compare alternative species tree topologies and branch lengths
directly.

To conduct a direct comparison of species trees using the
likelihood ratio test, we first compare the likelihoods of two trees
to find the most probable species tree that can explain the empirical
set of gene trees. The likelihood of a set of gene trees given a species
tree with branch lengths can be ascertained using functions in
Phybase [142]. Let Tree 1 be the null tree and Tree 2 be the
alternative tree. The likelihood ratio test statistic is t ¼ 2
(LTree2 � LTree1), in which LTree1 and LTree2 are the
log-likelihoods of the null and alternative hypotheses. The
log-likelihood of the null hypothesis can be obtained from the
output of the program MP-EST by fitting the branch lengths and
topology of Tree 1 to the set of empirical gene trees. Similarly, we
can find the log-likelihood of the alternative tree Tree 2 using
MP-EST. The null distribution of the test statistic t is approximated
by a parametric bootstrap. Specifically, we generate 100 or more
bootstrap samples of gene trees under the null tree Tree 1. For each
sample of these bootstrapped trees, we calculate the log-likelihoods
of the null and alternative trees using the procedure described
above. The null distribution of the test statistic t is approximated
by the test statistics of the bootstrap samples. If t for the null and
alternative species trees is outside the expected distribution of the
bootstrap sample statistics, then the result can be considered
significant.

We applied this approach to assessing alternative phylogenetic
hypotheses to an example from birds (fairy wrens; [162]; Fig. 5).
This data set consists of 18 genes and 26 taxa, with loci coming
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Fig. 5 Example of hypothesis testing of alternative phylogenetic trees under the multispecies coalescent
model. Top: alternative phylogenetic hypotheses involving the rearrangement of major groups of Australo-
Papuan fairy wrens based on Lee et al. [162]. The three alternative phylogenetic trees are colored to indicate
the three major groups whose relationships are being tested. Bottom: results of the likelihood ratio test (LRT)
and estimates of confidence limits on the test statistic t using parametric bootstrapping. The plots show the
distributions of the test statistic t resulting from gene trees built from resampled, bootstrapped sequence data.
Despite the use of sequence data to generate the bootstrap gene tree distributions, the LRT is only an indirect
test of the signal in the sequence data and instead is best thought of as a test of the fit of the estimated gene
tree distribution on alternative phylogenies. See main text for further details

230 Liang Liu et al.



from a variety of marker types (exons, introns, anonymous loci).
Lee et al. [162] applied a number ofMSC approaches to this data set
but did not compare alternative trees directly, having only used
bootstrap approaches. Here, we consider three-species trees gener-
ated from the rearrangement of the three major clades of wrens: the
core fairy wrens (Malurus), emu-wrens (Stipitirus), and grasswrens
(Amytornis; Fig. 5). Rearranging these major clades results in three
alternative rooted species trees. Based on traditional taxonomy and
because the gene trees in this data set were highly variable, even
among the three major clades, we consider these three alternative
hypotheses true alternatives and not “straw men.” Rooted maxi-
mum likelihood gene trees were built from the alignments of each
locus using RaxML [163] and then used as input data for the
likelihood ratio test described above. The LRT was applied first to
Tree 1 (null) versus Tree 2 andwas also applied to Tree 1 versus Tree
3 and Tree 2 versus Tree 3. The results indicate that Tree 1 fits to the
empirical gene trees significantly better than does Tree 2 or Tree
3 does (p < 0.01), and there is no significant difference between
Trees 2 and 3 in their fit to the empirical gene trees (p ¼ 0.52).
Thus, the LRTs strongly favor Tree 1 over both Tree 2 and Tree 3.

It is important to note that the LRT described above is not a
direct test of the phylogenetic signal in the DNA sequence data.
Rather, it is a test of the distribution of gene trees inferred from the
sequence data and assumes that the gene trees provided as data are
without error. It does indirectly test the signal in the sequence data,
because if the DNA sequences provide strong and consistent sup-
port of the gene trees, then the bootstrapped set of gene trees will
be highly similar to one another, and the confidence limits on t will
be very tight. By contrast, if the DNA sequence data does not have
a strong signal, then the confidence limits on t will be very wide,
and it will be difficult to reject alternative species trees. The LRT
described here does not involve nested models. If the gene trees are
known without error, then the value of t itself can be used to assess
significance, assuming a chi-square distribution with 2 degrees of
freedom. Further research is needed on methods for comparing
and testing alternative species trees in the context of the MSC.

4 Future Directions

Species tree methods are likely to continue to gain ascendancy as
the strongest evidence of taxonomic relationship in phylogenetic
research. As with any form of evidence, the conclusions of a species
tree analysis are fallible, with each method susceptible to biases in
the input data. For example, Xi et al. [164] showed that Phyml
[165] yields biased gene trees when there is little information in the
DNA sequences and can therefore result in biased species trees.
This issue is particularly problematic when using MP-EST v. 1.5,
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which, unlike ASTRAL or MP-EST v. 2.0, does not randomly
resolve or appropriately accommodate gene trees with polytomies
or 0 or near 0-length branches. This bias may have affected the
performance of MP-EST in previous side-by-side comparisons with
ASTRAL. In the future, further work should be devoted to discov-
ering and quantifying additional biases in inference of species trees.
With the size of phylogenomic data sets increasing, even small
biases can be amplified and result in poorly estimated species trees.

Many in the field agree that the most appealing statistical
models for species tree inference using the MSC include Bayesian
and full-likelihood models [52]. But it is still clear, at least to
empiricists, not only that “two-step” methods of species tree infer-
ence work quite well in general but also that the large phyloge-
nomic data sets available today prohibit the use of full-likelihood
methods. Regardless, we now know that both types of models
clearly outperform concatenation across wide swaths of parameter
space, especially if one also evaluates the reliability of the confidence
limits on the estimate of phylogeny and not only the point estimate
of the topology. The major directions for future research in the field
of species tree inference therefore include increasing the scalability
of computational inference of species trees, further development of
frameworks for hypothesis testing using the MSC, developing
additional models of divergence with gene flow and network coa-
lescent models (Fig. 4), and improvement in the estimation of gene
trees and species trees from SNP data [166]. Linking mutations in
species trees and heterogeneous gene trees to diverse phenotypic
and ecological data will be another important avenue for the future
[167, 168]. We view the MSC, with its application of population
genetic models to higher-level systematics, as a key component of
the long-term goal of uniting microevolution and macroevolution.
Even if it proves incomplete in the long term, the neutral MSC
provides a powerful null model for the understanding of genetic
diversity across time and space.

5 Practice Problems

1. Consider the following discordant set of gene trees. {Gene
1 ¼ (A:10,(B:8,C:8):2); Gene 2 ¼ (B:9,(A:6,C:6):3); Gene
3 ¼ ((A:4,B:4):4,C:8)}. Assuming that these genes perfectly
reflect the time of genetic divergence, and the only cause of
discordance is incomplete lineage sorting or deep coalescence,
what is the most likely species tree? Answer: ((A:4,B:4):2,C:6)

2. Find the data set for 30 noncoding loci from 4 species of
Australian grass finches (3 Poephila, plus out-group Taeniopy-
gia) from Jennings and Edwards [169]. It can be found in the
web page for Liang Liu’s BEST program: http://faculty.frank
lin.uga.edu/lliu/content/BEST. Use the Bayesian program

232 Liang Liu et al.

http://faculty.franklin.uga.edu/lliu/content/BEST
http://faculty.franklin.uga.edu/lliu/content/BEST


BEST [68] or BPP [70] and the nonparametric method in
STAR [65] to estimate the species tree for the four species,
using Taeniopygia as the out-group. Do you estimate the same
topology with both methods? What about the support for the
single internal branch? If the support is not the same, what
could be causing the difference? Answer: The BEST or BPP tree
should have higher support than the STAR tree, but they both
should have the same topology. The STAR tree might have lower
support because in the data set about half of the gene trees have a
topology differing from the species tree; whereas the full Bayesian
model accommodates this variation accurately, nonparametric
“two-step” methods interpret this type of gene tree variation as
discordance, in conflict with the majority of the gene trees and
with the species tree.

3. For the above data set, make individual gene trees using RaXml
[170], and use the likelihood functions and bootstrap capabil-
ities of Phybase [142] to conduct a likelihood ratio test of the
two alternative species tree topologies for the four grass
finches. Alternatively, you could use the posterior distribution
of gene trees generated in BEST to estimate the confidence
limits on the test statistic t. Is the tree estimated in question
2 significantly better than alternative trees? Answer: The LRT
indicates that the tree estimated in question 2 is significantly
better than alternative trees.
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Detecting the anomaly zone in species trees
and evidence for a misleading signal in higher-
level skink phylogeny (Squamata: Scincidae).
Syst Biol 65:465–477

34. Bryant D (2003) A classification of consensus
methods for phylogenetics. In: Janowitz M
et al (eds) BioConsensus. American Mathe-
matical Society, Providence, RI, pp 163–183

35. Ewing GB, Ebersberger I, Schmidt HA, von
Haeseler A (2008) Rooted triple consensus
and anomalous gene trees. BMC Evol Biol
8:118

36. Degnan JH, DeGiorgio M, Bryant D, Rosen-
berg NA (2009) Properties of consensus
methods for inferring species trees from gene
trees. Syst Biol 58:35–54

37. Ranwez V, Criscuolo A, Douzery EJ (2010)
SuperTriplets: a triplet-based supertree
approach to phylogenomics. Bioinformatics
26:i115–i123

38. Steel M, Rodrigo A (2008) Maximum likeli-
hood supertrees. Syst Biol 57:243–250

39. Wiens JJ (2003) Missing data, incomplete
taxa, and phylogenetic accuracy. Syst Biol
52:528–538

40. Gadagkar SR, Rosenberg MS, Kumar S
(2005) Inferring species phylogenies from
multiple genes: concatenated sequence tree
versus consensus gene tree. J Exp Zool B
Mol Dev Evol 304:64–74

41. Bull JJ, Huelsenbeck JP, Cunningham CW,
Swofford DL, Waddell PJ (1993) Partitioning
and combining data in phylogenetic analysis.
Syst Biol 42:384–397

42. Rokas A, Williams B, King N, Carroll S
(2003) Genome-scale approaches to resolving

234 Liang Liu et al.

https://doi.org/10.1101/262584


incongruence in molecular phylogenies.
Nature 425:798–804

43. Driskell AC, Ane C, Burleigh JG, McMahon
MM, O’Meara BC, Sanderson MJ (2004)
Prospects for building the tree of life from
large sequence databases. Science
306:1172–1174

44. Rokas A (2006) Genomics. Genomics and the
tree of life. Science 313:1897–1899

45. Kubatko LS, Degnan JH (2007) Inconsis-
tency of phylogenetic estimates from concate-
nated data under coalescence. Syst Biol
56:17–24

46. Wu M, Eisen JA (2008) A simple, fast, and
accurate method of phylogenomic inference.
Genome Biol 9:R151

47. Edwards SV et al (2016) Implementing and
testing the multispecies coalescent model: a
valuable paradigm for phylogenomics. Mol
Phylogenet Evol 94:447–462

48. Rannala B, Yang Z (2003) Bayes estimation of
species divergence times and ancestral popu-
lation sizes using DNA sequences from multi-
ple loci. Genetics 164:1645–1656

49. Bravo GA et al (2019) Embracing heteroge-
neity: coalescing the Tree of Life and the
future of phylogenomics. PeerJ 7:e6399.
https://doi.org/10.7717/peerj.6399

50. Felsenstein J (1981) Evolutionary trees from
DNA sequences: a maximum likelihood
approach. J Mol Evol 17:368–376

51. Rannala B, Yang ZH (2008) Phylogenetic
inference using whole genomes. Annu Rev
Genomics Hum Genet 9:217–231

52. Xu B, Yang Z (2016) Challenges in species
tree estimation under the multispecies coales-
cent model. Genetics 204:1353–1368

53. Liu L, Xi Z, Wu S, Davis CC, Edwards SV
(2015) Estimating phylogenetic trees from
genome-scale data. Ann N Y Acad Sci
1360:36–53

54. Edwards SV (2016) Inferring species trees. In:
Kliman R (ed) Encyclopedia of evolutionary
biology. Elsevier Inc., New York, pp 236–244

55. Castillo-Ramı́rez S, Liu L, Pearl D, Edwardsm
SV (2010) Bayesian estimation of species
trees: a practical guide to optimal sampling
and analysis. In: Knowles LL, Kubatko LS
(eds) Estimating species trees: practical and
theoretical aspects. Wiley-Blackwell, New Jer-
sey, pp 15–33

56. Liu L, Yu L, Edwards S (2010) A maximum
pseudo-likelihood approach for estimating
species trees under the coalescent model.
BMC Evol Biol 10:302

57. Mirarab S, Warnow T (2015) ASTRAL-II:
coalescent-based species tree estimation with
many hundreds of taxa and thousands of
genes. Bioinformatics 31:i44–i52

58. Liu L, Pearl DK (2007) Species trees from
gene trees: reconstructing Bayesian posterior
distributions of a species phylogeny using esti-
mated gene tree distributions. Syst Biol
56:504–514

59. Ogilvie HA, Bouckaert RR, Drummond AJ
(2017) StarBEAST2 brings faster species tree
inference and accurate estimates of substitu-
tion rates. Mol Biol Evol 34(8):2101–2114

60. Heled J, Drummond AJ (2010) Bayesian
inference of species trees from multilocus
data. Mol Biol Evol 27:570–580

61. Maddison WP, Knowles LL (2006) Inferring
phylogeny despite incomplete lineage sorting.
Syst Biol 55:21–30

62. Kubatko LS, Carstens BC, Knowles LL
(2009) STEM: species tree estimation using
maximum likelihood for gene trees under coa-
lescence. Bioinformatics 25:971–973

63. O’Meara BC (2010) New heuristic methods
for joint species delimitation and species tree
inference. Syst Biol 59:59–73

64. Mossel E, Roch S (2010) Incomplete lineage
sorting: consistent phylogeny estimation from
multiple loci. IEEE/ACM Trans Comput
Biol Bioinform 7:166–171

65. Liu L, Yu L, Pearl DK, Edwards SV (2009)
Estimating species phylogenies using coales-
cence times among sequences. Syst Biol
58:468–477

66. Liu L, Yu L (2011) Estimating species trees
from unrooted gene trees. Syst Biol
60:661–667

67. Mirarab S, Reaz R, Bayzid MS,
Zimmermann T, Swenson MS, Warnow T
(2014) ASTRAL: genome-scale coalescent-
based species tree estimation. Bioinformatics
30:i541–i548

68. Liu L (2008) BEST: Bayesian estimation of
species trees under the coalescent model. Bio-
informatics 24:2542–2543

69. Liu L, Pearl DK, Brumfield RT, Edwards SV
(2008) Estimating species trees using
multiple-allele DNA sequence data. Evolution
62:2080–2091

70. Rannala B, Yang Z (2017) Efficient Bayesian
species tree inference under the multispecies
coalescent. Syst Biol 66:823–842

71. Yang Z (2015) The BPP program for species
tree estimation and species delimitation. Curr
Zool 61:854–865

Building Phylogenetic Trees Using the Multispecies Coalesent Model 235

https://doi.org/10.7717/peerj.6399


72. Yang Z, Rannala B (2010) Bayesian species
delimitation using multilocus sequence data.
Proc Natl Acad Sci U S A 107:9264–9269

73. Chifman, J Kubatko L (2014) Quartet infer-
ence from SNP data under the coalescent
model. Bioinformatics 30:3317–3324

74. Liu L, Xi ZX, Davis CC (2015) Coalescent
methods are robust to the simultaneous
effects of long branches and incomplete line-
age sorting. Mol Biol Evol 32:791–805

75. Xi ZX, Liu L, Davis CC (2016) The impact of
missing data on species tree estimation. Mol
Biol Evol 33:838–860

76. Shen X-X, Hittinger CT, Rokas A (2017)
Contentious relationships in phylogenomic
studies can be driven by a handful of genes.
Nat Ecol Evol 1:0126

77. Suzuki Y, Glazko GV, Nei M (2002) Over-
credibility of molecular phylogenies obtained
by Bayesian phylogenetics. Proc Natl Acad Sci
U S A 99:16138–16143

78. Huang HT, He QI, Kubatko LS, Knowles LL
(2010) Sources of error inherent in species-
tree estimation: impact of mutational and coa-
lescent effects on accuracy and implications
for choosing among different methods. Syst
Biol 59:573–583

79. Jarvis ED et al (2014) Whole-genome ana-
lyses resolve early branches in the tree of life
of modern birds. Science 346:1320–1331

80. Hughes LC et al (2018) Comprehensive phy-
logeny of ray-finned fishes (Actinopterygii)
based on transcriptomic and genomic data.
Proc Natl Acad Sci U S A 115:6249–6254

81. Wickett NJ et al (2014) Phylotranscriptomic
analysis of the origin and early diversification
of land plants. Proc Natl Acad Sci U S A 111:
E4859–E4868

82. Avise JC, Ball RMJ (1990) Principles of gene-
alogical concordance in species concepts and
biological taxonomy. Oxf Surv Evol Biol
7:45–67

83. Solis-Lemus C, YangM, Ane C (2016) Incon-
sistency of species tree methods under gene
flow. Syst Biol 65:843–851

84. Stenz NW, Larget B, Baum DA, Ane C
(2015) Exploring tree-like and non-tree-like
patterns using genome sequences: an example
using the inbreeding plant species Arabidopsis
thaliana (L.) Heynh. Syst Biol 64:809–823

85. Hudson RR, Coyne JA (2002) Mathematical
consequences of the genealogical species con-
cept. Evolution 56:1557–1565

86. Tobias JA, Seddon N, Spottiswoode CN, Pil-
grim JD, Fishpool LDC, Collar NJ (2010)
Quantitative criteria for species delimitation.
Ibis 152:724–746

87. Jackson ND, Carstens BC, Morales AE,
O’Meara BC (2017) Species delimitation
with gene flow. Syst Biol 66:799–812

88. Leache AD, Zhu T, Rannala B, Yang Z (2018)
The spectre of too many species. Syst Biol
66:379

89. Solis-Lemus C, Knowles LL, Ane C (2015)
Bayesian species delimitation combining mul-
tiple genes and traits in a unified framework.
Evolution 69:492–507

90. Sukumaran J, Knowles LL (2017) Multispe-
cies coalescent delimits structure, not species.
Proc Natl Acad Sci U S A 114:1607–1612

91. Carstens BC, Pelletier TA, Reid NM, Satler
JD (2013) How to fail at species delimitation.
Mol Ecol 22:4369–4383

92. Carstens BC, Dewey TA (2010) Species
delimitation using a combined coalescent
and information-theoretic approach: an
example from North American Myotis bats.
Syst Biol 59:400–414

93. De Queiroz K (2007) Species concepts and
species delimitation. Syst Biol 56:879–886

94. Pinho C, Hey J (2010) Divergence with gene
flow: models and data. Annu Rev Ecol Evol
Syst 41:215–230

95. Hey J, Nielsen R (2007) Integration within
the Felsenstein equation for improved Mar-
kov chain Monte Carlo methods in popula-
tion genetics. Proc Natl Acad Sci U S A
104:2785–2790

96. Carstens BC, Morales AE, Jackson ND,
O’Meara BC (2017) Objective choice of phy-
logeographic models. Mol Phylogenet Evol
116:136–140

97. Wakeley J (2001) The effects of subdivision
on the genetic divergence of populations and
species. Evolution 54:1092–1101

98. Solı́s-Lemus C, YangM, Ané C (2016) Incon-
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(2015) Exploring tree-like and non-tree-like
patterns using genome sequences: an example
using the inbreeding plant species Arabidopsis
thaliana (L.) Heynh. Syst Biol 64(5):809–823

135. Beaumont MA, Balding DJ (2004) Identify-
ing adaptive genetic divergence among popu-
lations from genome scans. Mol Ecol
13:969–980

136. Storz JF (2005) Using genome scans of DNA
polymorphism to infer adaptive population
divergence. Mol Ecol 14:671–688

137. Barrett RDH, Hoekstra HE (2011) Molecu-
lar spandrels: tests of adaptation at the genetic
level. Nat Rev Genet 12:767–780

138. Swofford DL (1991) When are phylogeny
estimates from molecular and morphological
data incongruent? In: Miyamoto MM, Cra-
craft J (eds) Phylogenetic analysis of DNA
sequences. Oxford University Press, Oxford,
pp 295–333

139. Dufraigne C, Fertil B, Lespinats S, Giron A,
Deschavanne P (2005) Detection and charac-
terization of horizontal transfers in prokar-
yotes using genomic signature. Nucleic
Acids Res 33:e6

140. Roettger M, Martin W, Dagan T (2009) A
machine-learning approach reveals that align-
ment properties alone can accurately predict
inference of lateral gene transfer from
discordant phylogenies. Mol Biol Evol
26:1931–1939

141. Zimmermann T, Mirarab S, Warnow T
(2014) BBCA: improving the scalability of
*BEAST using random binning. BMC Geno-
mics 15(Suppl 6):S11

142. Liu L, Yu L (2010) Phybase: an R package
for species tree analysis. Bioinformatics
26:962–963

143. Angelis K, dos Reis M (2015) The impact of
ancestral population size and incomplete line-
age sorting on Bayesian estimation of species
divergence times. Curr Zool 61:874–885

144. Edwards SV, Beerli P (2000) Perspective:
gene divergence, population divergence, and
the variance in coalescence time in phylogeo-
graphic studies. Evolution 54:1839–1854

145. Stadler T (2011) Simulating trees with a fixed
number of extant species. Syst Biol
60:676–684

146. Papadantonakis S, Poirazi P, Pavlidis P (2016)
CoMuS: simulating coalescent histories and
polymorphic data from multiple species. Mol
Ecol Resour 16:1435–1448

147. Anderson CNK, Ramakrishnan U, Chan YL,
Hadly EA (2005) Serial SimCoal: a popula-
tion genetics model for data from multiple
populations and points in time. Bioinformat-
ics 21:1733–1734

148. Excoffier L, Foll M (2011) fastsimcoal: a
continuous-time coalescent simulator of
genomic diversity under arbitrarily complex
evolutionary scenarios. Bioinformatics
27:1332–1334

149. Robinson DF, Foulds LR (1981) Compari-
son of phylogenetic trees. Math Biosci
53:131–147

150. Song S, Liu L, Edwards SV, Wu SY (2012)
Resolving conflict in eutherian mammal phy-
logeny using phylogenomics and the multi-
species coalescent model. Proc Natl Acad Sci
U S A 109:14942–14947

151. Heled J, Bryant D, Drummond AJ (2013)
Simulating gene trees under the multispecies
coalescent and time-dependent migration.
BMC Evol Biol 13:44

152. Edwards SV, Potter S, Schmitt CJ, Bragg JG,
Moritz C (2016) Reticulation, divergence,
and the phylogeography–phylogenetics con-
tinuum. Proc Natl Acad Sci U S A
113:8025–8032

153. Weyenberg G, Huggins PM, Schardl CL,
Howe DK, Yoshida R (2014) KDETREES:
non-parametric estimation of phylogenetic
tree distributions. Bioinformatics
30:2280–2287

154. Gaither, J Kubatko L (2016) Hypothesis tests
for phylogenetic quartets, with applications
to coalescent-based species tree inference.
J Theor Biol 408:179–186

155. McVay JD, Carstens BC (2013) Phylogenetic
model choice: justifying a species tree or con-
catenation analysis. J Phylogenet Evol Biol
1:114

156. Felsenstein J (1985) Confidence limits on
phylogenies: an approach using the bootstrap.
Evolution 39:783–791

157. Lemoine F, Domelevo Entfellner JB,
Wilkinson E, Correia D, Davila Felipe M, De
Oliveira T, Gascuel O (2018) Renewing Fel-
senstein’s phylogenetic bootstrap in the era of
big data. Nature 556:452–456

158. Seo TK (2008) Calculating bootstrap prob-
abilities of phylogeny using multilocus
sequence data. Mol Biol Evol 25:960–971

159. Sayyari E, Mirarab S (2016) Fast coalescent-
based computation of local branch support
from quartet frequencies. Mol Biol Evol
33:1654–1668

160. Liu L et al (2017) Reply to Gatesy and
Springer: Claims of homology errors and

238 Liang Liu et al.



zombie lineages do not compromise the dat-
ing of placental diversification. Proc Natl
Acad Sci U S A 114:E9433–E9434

161. Edwards SV (2016) Phylogenomic subsam-
pling: a brief review. Zool Scr 45:63–74

162. Lee JY, Joseph L, Edwards SV (2012) A spe-
cies tree for the Australo-Papuan Fairy-wrens
and Allies (Aves: Maluridae). Syst Biol
61:253–271

163. Stamatakis A (2014) RAxML version 8: a tool
for phylogenetic analysis and post-analysis of
large phylogenies. Bioinformatics
30:1312–1313

164. Xi Z, Liu L, Davis CC (2015) Genes with
minimal phylogenetic information are prob-
lematic for coalescent analyses when gene tree
estimation is biased. Mol Phylogenet Evol
92:63–71

165. Guindon S, Dufayard JF, Hordijk W,
Lefort V, Gascuel O (2009) PhyML: fast and
accurate phylogeny reconstruction by

maximum likelihood. Infect Genet Evol
9:384–385

166. Leaché AD, Oaks JR (2017) The utility of
single nucleotide polymorphism (SNP) data
in phylogenetics. Annu Rev Ecol Evol Syst
48:69–84

167. Pease JB, Haak DC, Hahn MW, Moyle LC
(2016) Phylogenomics reveals three sources
of adaptive variation during a rapid radiation.
PLoS Biol 14:e1002379

168. Hahn MW, Nakhleh L (2016) Irrational exu-
berance for resolved species trees. Evolution
70:7–17

169. Jennings WB, Edwards SV (2005) Specia-
tional history of Australian grass finches (Poe-
phila) inferred from 30 gene trees. Evolution
59:2033–2047

170. Stamatakis A (2006) RAxML-VI-HPC: maxi-
mum likelihood-based phylogenetic analyses
with thousands of taxa and mixed models.
Bioinformatics 22:2688–2690

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

Building Phylogenetic Trees Using the Multispecies Coalesent Model 239

http://creativecommons.org/licenses/by/4.0/

	Preface
	Acknowledgements
	Contents
	Contributors
	Part I: Introduction: Bioinformatician´s Primers
	Chapter 1: Introduction to Genome Biology and Diversity
	1 Introduction
	2 Organism Diversity and Cell Types
	2.1 Viruses
	2.2 Bacteria
	2.3 Archaea
	2.4 Eukaryotes

	3 Genome Structure and Organization
	3.1 Viral Genomes
	3.2 Bacterial Genomes
	3.3 Archaeal Genomes
	3.4 Eukaryotic Genomes
	3.5 Auxiliary DNA Structures
	3.5.1 Mitochondrial DNA
	3.5.2 Plastid DNA
	3.5.3 Nucleomorph DNA
	3.5.4 Plasmid DNA
	3.5.5 MicroDNA


	4 Genomic Storage and Processing of Information
	4.1 Gene Expression
	4.1.1 Transcriptional Regulation
	4.1.2 Translational Regulation
	4.1.3 Epigenetics

	4.2 Mobile Genetic Elements

	5 The Role of the Genome as an Informational Entity in Biology
	References

	Chapter 2: Probability, Statistics, and Computational Science
	1 Statistical Models
	2 Statistical Inference
	3 Hidden Data and the EM Algorithm
	4 Markov Chains
	5 Continuous-Time Markov Chains
	6 Hidden Markov Models
	7 Bayesian Networks
	References

	3: A Not-So-Long Introduction to Computational Molecular Evolution
	1 Introduction
	2 Parsimony and Likelihood
	2.1 A Brief Overview of Parsimony
	2.2 Assessing the Reliability of an Estimate: The Bootstrap
	2.3 Parsimony and LBA
	2.4 Origin of the Problem
	2.5 Modeling Molecular Evolution
	2.6 Computation on a Tree
	2.7 Substitution Models and Instantaneous Rate Matrices Q
	2.8 Some Computational Aspects
	2.8.1 Optimization of the Likelihood Function
	2.8.2 Convergence

	2.9 Selection of the Appropriate Substitution Model
	2.9.1 The Likelihood Ratio Test
	2.9.2 Information-Theoretic Approaches
	2.9.3 The Bayesian Approach
	2.9.4 Cross-Validation

	2.10 Finding the Best Tree Topology
	2.10.1 Counting Trees
	2.10.2 Some Heuristics to Find the Best Tree
	2.10.3 Cutting Corners with ABC and AI


	3 Uncovering Processes and Times
	3.1 Dating the Tree of Life: Always Deeper?
	3.1.1 The Strict Molecular Clock
	3.1.2 Local Molecular Clocks
	3.1.3 Correlated Relaxed Clocks
	3.1.4 Uncorrelated Relaxed Clocks
	3.1.5 Some Applications of Relaxed Clock Models


	4 Molecular Population Phylogenomics
	4.1 Bridging the Gap Between Population Genetics and Phylogenetics
	4.2 Origin of Mutation-Selection Models: The Genic Selection Model
	4.2.1 Fixation Probabilities
	4.2.2 The Case of Genic Selection


	5 High-Performance Computing for Phylogenetics
	5.1 Parallelization
	5.2 HPC and Cloud Computing

	6 Conclusions
	References


	Part II: Genomic Alignment and Homology Inference
	Chapter 4: Whole-Genome Alignment
	1 Introduction
	2 The Definition and Significance of WGA
	2.1 WGA as a Correspondence Between Genomes
	2.2 Toporthology
	2.3 Definition and Representation
	2.4 Comparison to Other Homology Prediction Tasks
	2.5 Significance

	3 Methods for WGA
	3.1 A Simplistic Approach
	3.2 The Two Major Approaches to WGA
	3.3 Local Pairwise Genomic Alignment
	3.4 The Hierarchical Approach
	3.5 The Local Approach
	3.6 Refining WGAs

	4 Evaluation of WGAs
	5 Future Challenges
	6 Exercises
	References

	Chapter 5: Inferring Orthology and Paralogy
	1 Introduction
	Box 1: Terminology
	2 Inferring Orthology
	2.1 Graph-Based Methods
	2.1.1 Graph Construction Phase: Orthology Inference
	Box 2: Computational Considerations for Scaling to Many Genomes
	Allowing for More Than One Ortholog
	Evolutionary Distances
	Differential Gene Losses

	2.1.2 Clustering Phase: From Pairs to Groups
	2.1.3 Hierarchical Clustering

	2.2 Tree-Based Methods
	2.2.1 Unresolved Species Tree
	2.2.2 Rooting
	2.2.3 Gene Tree Uncertainty
	2.2.4 Parsimony vs. Likelihood

	2.3 Graph-Based vs. Tree-Based: Which Is Better?

	3 Meta-methods
	4 Scaling to Many Genomes
	5 Benchmarking Orthology
	5.1 Benchmarking Approaches
	5.1.1 Functional Conservation
	5.1.2 Gene Neighborhood Conservation
	5.1.3 Species Tree Discordance Test
	5.1.4 Gold Standard Gene Tree Test
	5.1.5 Subtree Consistency Test
	5.1.6 Latent Class Analysis
	5.1.7 Simulated Genomes

	5.2 Orthology Benchmarking Service
	5.3 Conclusions on Benchmarking

	6 Applications
	7 Conclusions and Outlook
	8 Exercises
	References

	Chapter 6: Transposable Elements: Classification, Identification, and Their Use As a Tool For Comparative Genomics
	1 Introduction
	2 Discovery of Mobile Elements
	3 Transposons Classification
	3.1 Insertion Sequences and Other Bacterial Transposons
	3.2 Eukaryotic Transposable Elements
	3.2.1 Class I: Mobile Elements
	3.2.2 Class II: Mobile Elements


	4 Identification of Transposable Elements
	4.1 De Novo Approaches to Finding Repetitive Elements
	4.2 Transposable Elements Determination in NGS Data
	4.3 Population-Level Analyses of Transposable Elements
	4.4 Comparative Genomics of TE Insertions
	4.5 Classification of Transposable Elements
	4.6 Pipelines
	4.7 Meta-analyses

	5 Concluding Remarks
	References


	Part III: Phylogenomics and Genome Evolution
	Chapter 7: Modern Phylogenomics: Building Phylogenetic Trees Using the Multispecies Coalescent Model
	1 Introduction
	1.1 Stopgap Approaches to Gene Tree Heterogeneity

	2 The Multispecies Coalescent Model
	2.1 Sources of Gene Tree/Species Tree Discordance and Violations of the Multispecies Coalescent Model
	2.1.1 Population Processes
	Delimitation of Species and Diverging Lineages
	Gene Flow

	2.1.2 Molecular Processes
	Horizontal Gene Transfer
	Gene Duplication
	Natural Selection


	2.2 More About Violations and Model Fit of the Multispecies Coalescent Model
	2.2.1 Phylogenetic Outlier Loci
	2.2.2 Genomic Signals of Phylogenetic Outliers
	2.2.3 Simulation Approaches to Detecting Phylogenetic Outliers


	3 Hypothesis Testing Using the Multispecies Coalescent Model
	4 Future Directions
	5 Practice Problems
	References

	Chapter 8: Genome-Wide Comparative Analysis of Phylogenetic Trees: The Prokaryotic Forest of Life
	Abbreviations
	1 Introduction
	2 Materials
	2.1 The Forest of Life (FOL) and Nearly Universal Trees (NUTs)

	3 Methods
	3.1 Boot-Split Distance: A Method to Compare Phylogenetic Trees Taking into Account Bootstrap Support
	3.1.1 Boot-Split Distance (BSD)
	3.1.2 The BSD Algorithm
	3.1.3 Using a Bootstrap Threshold: Pros and Cons
	3.1.4 Testing the BSD Method
	3.1.5 Analysis of Random Trees and the Significance of BSD Results

	3.2 Analysis of Topological Trends in a Set of Phylogenetic Trees
	3.2.1 Calculation of the Tree Inconsistency
	3.2.2 Classical Multidimensional Scaling Analysis

	3.3 Analysis of Quartets of Species
	3.3.1 Definition of Quartets and Mapping Quartets onto Trees
	3.3.2 Distance Matrices and Heat Maps
	3.3.3 The Tree-Net Trend (TNT)


	4 Phylogenetic Concepts in Light of Pervasive Horizontal Gene Transfer
	4.1 Patterns in the Phylogenetic Forest of Life
	4.2 The Nearly Universal Trees (NUTs)
	4.3 The Tree of Life (TOL) as a Central Trend in the FOL
	4.4 The NUTs Topologies as the Central Trend and Detection Distinct Evolutionary Patterns in the FOL
	4.5 The Tree and Net Components of Prokaryote Evolution

	5 Conclusions
	6 Exercises
	References

	Chapter 9: The Methodology Behind Network Thinking: Graphs to Analyze Microbial Complexity and Evolution
	1 Introduction
	2 Sequence Similarity Networks (SSNs)
	Box 1: How to Build Your Own Sequence Similarity Network
	2.1 Scalability of Sequence Similarity Network Analysis
	2.2 Exploiting Sequence Similarity Networks for Identification of Gene Families
	2.3 Exploiting SSNs to Identify Signatures of ``Tinkering´´ and Gene Fusion
	Box 2: How to Identify Composite Genes Using CompositeSearch
	2.4 Exploiting SSNs for Ecological Studies
	2.4.1 Assortativity as a Tool to Study Geographical and Habitat Distributions of Microbes and Genes
	2.4.2 Conductance in the Comparison of Lifestyles and Evolutionary Histories

	2.5 SSNs in Remote Homologue Identification: Shedding Light on the Microbial Dark Matter
	2.6 Exploiting SSNs to Analyze Classifications

	3 Gene-Sharing Networks
	3.1 Classification of Entities Using Gene-Sharing Networks
	3.2 Exploring Routes of Gene Sharing in Gene-Sharing Networks

	4 Bipartite Graphs
	Box 3: Generating Gene-Sharing Networks and Bipartite Graphs
	Box 4: Considerations for the Construction and Analysis of Bipartite Graphs Using AcCNET and MultiTwin
	4.1 Using Bipartite Graphs to Explore Patterns of Gene Sharing Between Diverse Entities

	5 Conclusions
	6 Exercises
	Glossary
	References

	Chapter 10: Bayesian Molecular Clock Dating Using Genome-Scale Datasets
	1 Introduction
	2 Software and Data Files
	2.1 Tree and Fossil Calibrations
	2.2 Molecular Sequence Data

	3 Tutorial
	3.1 Overview
	3.2 Calculation of the Gradient and Hessian to Approximate the Likelihood
	3.3 Calculation of the Posterior of Times and Rates
	3.3.1 Control File and Priors
	3.3.2 Running and Summarizing the MCMC

	3.4 Convergence Diagnostics of the MCMC
	3.5 MCMC Sampling from the Prior

	4 General Recommendations for Bayesian Clock Dating
	4.1 Taxon Sampling, Data Partitioning, and Estimation of Tree Topology
	4.2 Selection of Fossil Calibrations
	4.3 Construction of the Time Prior
	4.4 Selection of the Clock Model

	5 Exercises
	5.1 Autocorrelated Rate Model
	5.2 MCMC Sampling with Exact Likelihood Calculation
	5.3 Change of Fossil Calibrations
	5.4 Comparing Calibration Densities and Prior Densities
	5.5 Time Estimation in a Supermatrix of 330 Species

	References

	Chapter 11: Genome Evolution in Outcrossing vs. Selfing vs. Asexual Species
	1 Introduction
	2 Contrasted Genomic Consequences of Breeding Systems
	2.1 Consequences of Breeding Systems on Population Genetics Parameters
	2.2 Breeding Systems and Selection Efficacy
	2.2.1 Drift and Recombination: Parallel Reduction in Selection Efficacy in Selfers and Asexuals?
	2.2.2 Segregation: Dealing with Heterozygotes
	2.2.3 Selection on Genetic Systems

	2.3 Breeding Systems and Genomic Conflicts
	2.3.1 Relaxation of Sexual Conflicts in Selfers and Asexuals
	2.3.2 Biased Gene Conversion as a Meiotic Drive Process: Consequences for Nucleotide Landscape and Protein Evolution
	2.3.3 Transposable Elements in Selfers and Asexuals: Purging or Accumulation?

	2.4 Breeding Systems, Ploidy, and Hybridization
	2.5 Breeding Systems and Genome Size Evolution

	3 A Genomic View of Breeding System Evolution
	3.1 Genomic Approaches to Infer Breeding System Evolution
	3.1.1 Genomic Characterization of Breeding Systems
	3.1.2 Inferring and Dating Breeding System Transitions

	3.2 Matching Breeding System Evolution Theories with Genomic Data
	3.2.1 Testing the Dead-End Hypothesis: Comparison Between Selfing and Asexuality
	3.2.2 Evading the ``Dead End´´


	4 Conclusion and Prospects
	5 Questions
	References


	Part IV: Natural Selection and Innovation in Genomic Sequences
	Chapter 12: Selection Acting on Genomes
	1 Introduction
	2 Comparative Genome Data
	3 Methods
	3.1 Probabilistic Models for Genome Evolution
	3.2 Detecting Regions of Accelerated Genome Evolution
	3.3 Codon Models: Site, Branch, and Branch-Site Specificity
	3.3.1 Basic Codon Models
	3.3.2 Accounting for Variability of Selective Pressures
	3.3.3 Case Study: Application of a Genome-Wide Scan of Positive Selection on Six Mammalian Genomes
	3.3.4 Selective Variability Among Codons: Site Models
	3.3.5 Selective Variability over Time: Branch Models
	3.3.6 Temporal and Spatial Variation of Selective Pressure
	3.3.7 Polymorphism-Aware Phylogenetic Models

	3.4 Software

	4 Notes/Discussion
	4.1 Quality of Multiple Alignments
	4.2 Biased Gene Conversion and Recombination
	4.3 Selection on Synonymous Sites

	5 Exercises
	References

	Chapter 13: Looking for Darwin in Genomic Sequences: Validity and Success Depends on the Relationship Between Model and Data
	1 Introduction
	2 Conceptual Foundations
	2.1 How Should We Think About the Alignment-Generating Process?
	2.2 What Is the Objective of Model Building?

	3 Phase I: Pioneering CSMs
	3.1 Case Study A: Low Information Content
	3.1.1 Irregularity and Penalized Likelihood

	3.2 Case Study B: Model Misspecification

	4 Phase II: Advanced CSMs
	4.1 Case Study C: Confounding
	4.2 Case Study D: Phenomenological Load

	5 Discussion
	References

	Chapter 14: Evolution of Viral Genomes: Interplay Between Selection, Recombination, and Other Forces
	1 Introduction
	2 Materials
	3 Methods
	3.1 How to Run a Selection Analysis
	3.2 BUSTED
	Statistical Test Procedure
	Example Analysis
	Interpreting Results
	3.3 RELAX
	Statistical Test Procedure
	Example Analysis
	Interpreting Results
	3.4 aBSREL
	What Biological Question Is the Method Designed to Answer?
	Statistical Test Procedure
	Example Analysis
	Interpreting Results
	3.5 Site-Level Selection: MEME, FEL, SLAC, and FUBAR
	Statistical Test Procedure
	Example Analysis
	Interpreting Results
	3.6 Screening Sequences for Recombination
	3.7 GARD
	What Biological Question Is the Method Designed to Answer?
	Statistical Test Procedure
	Interpreting Results
	3.8 Accounting for Synonymous Rate Variation
	Interpreting Results

	4 Tips
	5 Exercises
	References

	Chapter 15: Evolution of Protein Domain Architectures
	1 Introduction
	1.1 Overview
	1.2 Protein Domains
	1.3 Domain Databases
	1.4 Domain Architectures
	1.5 Mechanisms for Domain Architecture Change

	2 Distribution of the Sizes of Domain Families
	3 Kingdom and Age Distribution of Domain Families and Architectures
	4 Domain Co-occurrence Networks
	5 Supra-domains and Conserved Domain Order
	6 Domain Mobility, Promiscuity, or Versatility
	7 Principles of Domain Architecture Evolution
	8 Inferring Ancestral Domain Architectures
	9 Polyphyletic Domain Architecture Evolution
	10 Conclusions
	11 Materials and Methods
	12 Online Domain Database Resources
	13 Domain Architecture Analysis Software
	14 Exercises/Questions
	References

	Chapter 16: New Insights on the Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans
	1 Transposable Elements Are Abundant and Active Genome Denizens
	2 Drosophila and Humans: Two Extremes in TE Diversity and Population Dynamics
	3 Methodology Used to Study TE Population Dynamics
	4 Rates of Transposition
	4.1 Empirical Estimates of the Rates of Transposition in Drosophila and Humans
	4.2 Transposition Control Mechanisms
	4.2.1 TE Self-Regulation
	4.2.2 Regulation by Host Factors


	5 Rate of Fixation and Frequency Distribution
	5.1 Natural Selection Against TE Insertions
	5.2 TE-Induced Adaptations

	6 Rate of Loss
	7 Horizontal Transfer of TE Insertions
	8 Conclusion
	9 Questions
	References


	Part V: Population Genomics and Omics in Light of Disease and Evolution
	Chapter 17: Association Mapping and Disease: Evolutionary Perspectives
	1 Introduction
	2 The Allelic Architecture of Genetic Determinants for Disease
	2.1 Theoretical Models for the Allelic Architecture of Common Diseases
	2.2 The Allelic Frequency Spectrum in Humans

	3 The Basic GWAS
	3.1 Statistical Tests
	3.2 Effect Estimates
	3.3 Quality Control
	3.4 Confounding Factors
	3.5 Meta-analysis of GWAS
	3.6 Replication

	4 Imputation: Squeezing More Information Out of Your Data
	4.1 Selection of Reference Data Set
	4.2 Imputation Software
	4.3 Testing Imputed Variants

	5 Current Status
	5.1 Polygenic Architecture of Common Diseases
	5.2 Pleiotropy
	5.3 Differences Between Diseases

	6 Perspectives
	7 Questions
	References

	Chapter 18: Ancestral Population Genomics
	1 Introduction
	2 Coalescent Theory and Speciation
	2.1 The Standard Coalescent Model
	2.2 Adding Mutations to the Standard Coalescent Model
	2.3 Taking Recombination into Account

	3 Adding Genetic Barriers and Gene Flow to the Picture: The Structured Coalescent
	3.1 Isolation Model with Two Species
	3.2 Isolation Model with Three or More Species and Incomplete Lineage Sorting
	3.3 Isolation-with-Migration Model with Two Species and Two Samples
	3.4 Isolation-with-Migration Model with Three or More Species and Three or More Samples

	4 Approximating the Coalescent with Recombination Along Genomes
	4.1 The Independent Loci Approach: Free Recombination Between, No Recombination Within
	4.2 State-Space Model: Simonsen-Churchill Framework
	4.3 Time Discretization: Setting Up the Finite State HMM
	4.4 Careful Treatment of Mutation Process
	4.5 Statistical Inference of Population Parameters from Sequences
	4.5.1 Summary Statistics: Runs of Homozygosity and Pair Correlation
	4.5.2 Parameter Estimation


	5 Extending the Pairwise Sequentially Markov Coalescent
	5.1 From 2 to n Genomes
	5.1.1 The Multiple Sequentially Markov Coalescent (MSMC)
	5.1.2 The Demographic Inference with Composite Approximate Likelihood (diCal)
	5.1.3 Extending the SMC with Conditional Site Frequency Spectra (CSFS)
	5.1.4 Explicit Reconstruction of the Ancestral Recombination Graph

	5.2 The Case of Multiple Species

	6 Specific Issues Faced When Dealing with Genomic Data
	6.1 Sequencing Errors and Rate Variation
	6.2 Diploid Data and Phasing
	6.3 Structural Variation and Genome Alignment

	7 Discussion
	8 Exercises
	8.1 ILS in Primates
	8.2 Estimating Ancestral Population Size from the Observed Amount of ILS
	8.3 Number of Migration Rates in the General k-Population IM Model

	References

	Chapter 19: Introduction to the Analysis of Environmental Sequences: Metagenomics with MEGAN
	1 Introduction
	2 Workflows for Metagenomic Analysis with MEGAN
	2.1 Short Read Pipeline
	2.1.1 Read Alignment with DIAMOND
	2.1.2 Taxonomic and Functional Classification with MEGAN6
	2.1.3 Investigation of the Results

	2.2 Long Read Pipeline
	2.2.1 Long Read Analysis Pipeline
	2.2.2 Alignment Using LAST
	2.2.3 Taxonomic and Functional Classification of Long Reads
	2.2.4 Investigation of the Results


	3 Comparison of Multiple Samples
	4 Outlook
	4.1 MEGAN Resources

	References

	Chapter 20: Multiple Data Analyses and Statistical Approaches for Analyzing Data from Metagenomic Studies and Clinical Trials
	1 Introduction
	2 Description of Example Studies
	2.1 Scenario 1: Metagenomic Analyses of Human Atherosclerotic Plaque Samples
	2.1.1 Methodology Details

	2.2 Scenario 2: The Effect of Omega-3 Polyunsaturated Fatty Acid Supplements on the Human Intestinal Microbiota
	2.2.1 Study Design
	2.2.2 Sample Preparation and Sequencing
	2.2.3 Data Analyses

	2.3 Scenario 3: Comparing Effects of Two Drug Treatments for an Infectious Disease
	2.3.1 Sample Preparation and Sequencing and Data Analyses


	3 General Methods for Annotation and Statistical Analyses
	3.1 Taxonomic and Functional Annotation
	3.2 Metagenome Assembly
	3.3 Rarefaction Curves
	3.4 Subsample Comparison
	3.5 Comparative Visualization
	3.6 Diversity Analyses
	3.7 Comparison Using Distance Matrices
	3.8 Boxplots
	3.9 Hierarchical Clustering
	3.10 Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA)
	3.11 Canonical-Correlation Analysis (CCA) and Canonical-Correspondence Analysis (CCA)
	3.12 Multivariate Analyses

	4 Tools and Packages Commonly Used in Metagenomic Studies
	5 Concluding Remarks
	References

	Chapter 21: Systems Genetics for Evolutionary Studies
	1 Introduction
	1.1 Evolutionary xQTL Studies
	1.2 Adding a Prior

	2 Designing an Evolutionary xQTL Experiment
	Box 1: Adaptive evolution in R-genes
	2.1 Create a Prior with PAML
	2.2 Select a Suitable Experimental Population
	2.3 Select an xQTL Technology
	2.4 Sizing the Experimental Population
	2.5 Analyzing the xQTL Experiment with R/qtl
	2.6 Matching the Prior
	2.7 Combining xQTL Results: Causality and Network Inference

	3 Discussion
	4 Questions
	References


	Part VI: Handling Genomic Data: Resources and Computation
	Chapter 22: Semantic Integration and Enrichment of Heterogeneous Biological Databases
	Abbreviations
	1 Introduction
	2 Modeling a Biological Database with Relational Database Technology
	2.1 Limitations of Relational Databases and Emerging Solutions for Data Integration

	3 Semantic Web Technologies
	3.1 Unique Resource Identifier (URI)
	3.2 Resource Description Framework (RDF)
	3.3 RDF Schema (RDFS)
	3.4 Web Ontology Language (OWL)
	3.5 RDF Serialization Formats
	3.6 Querying the Semantic Web with SPARQL

	4 Modeling Biological Databases with Semantic Web Technologies
	5 Ontology-Based Integration of Heterogeneous Data Stores
	5.1 A System´s Perspective
	5.1.1 Base Data Layer
	5.1.2 Data Model Layer
	5.1.3 Integration Layer
	5.1.4 Presentation Layer

	5.2 A Concrete Example: A Global Ontology to Unify OMA and Bgee
	5.3 How to Link a Database with an Ontology?
	5.4 Putting Things Together

	6 Timeline of Semantic Web Technologies and Ontology-Based Data Integration in Life Sciences
	7 Conclusions and Outlook
	8 Exercises
	References

	Chapter 23: High-Performance Computing in Bayesian Phylogenetics and Phylodynamics Using BEAGLE
	1 Introduction
	2 The BEAGLE Library
	2.1 Principles
	2.1.1 Computing Observed Data Likelihoods
	2.1.2 Parallel Computation

	2.2 Design
	2.2.1 Library
	2.2.2 Application Programming Interface

	2.3 Performance
	2.4 Memory Usage
	2.5 Hardware

	3 Results
	3.1 Carnivores
	3.2 Ebola Virus
	3.3 Phylogeography
	3.3.1 Bat Rabies
	3.3.2 Ebola Virus


	4 Examples
	4.1 Human Influenza H3N2
	4.2 Ebola Virus

	5 Adaptive MCMC
	6 Conclusions
	7 Notes
	8 Exercises
	References

	Chapter 24: Scalable Workflows and Reproducible Data Analysis for Genomics
	1 Introduction
	1.1 Overview
	1.2 Parallelization in the Cloud
	1.3 A Pipeline for the Cloud
	1.4 Parallelization of Applications Using a Workflow
	Box 1: Understanding Parallelization
	1.4.1 GPU Programming


	2 Package Software in a Container
	2.1 Debian Med
	2.1.1 Create a Docker Image with Debian

	2.2 GNU Guix
	2.2.1 Create a Docker Image with GNU Guix

	2.3 Conda
	2.3.1 Create a Docker Image with Bioconda

	2.4 A Note on Software Licenses

	3 Create a Scalable and Reusable Workflow
	3.1 Example Workflow
	3.2 Common Workflow Language
	3.3 Guix Workflow Language
	3.4 Snakemake
	3.5 Nextflow

	4 Discussion
	5 Questions
	References

	Chapter 25: Sharing Programming Resources Between Bio* Projects
	1 Introduction
	1.1 Bridging Functional Resources Calling from Program to Program
	1.2 Remote Procedure Call
	1.3 Local Call Stack
	1.4 Comparing Approaches

	2 Results
	2.1 Calling into R
	2.1.1 Using GeneR with Plain R
	2.1.2 Calling into R from Other Languages with RPC
	2.1.3 Calling into R from Other Languages with the Call Stack Approach

	2.2 Native Bio* Implementations
	2.3 Using the JVM for Cross-Language Support
	2.4 Shared C Library Cross-Calling Using EMBOSS Codon Translation
	2.4.1 FFI

	2.5 Calling Program to Program
	2.6 Web Services

	3 Discussion
	4 Questions
	References

	Index



