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Phylogenomic subsampling is a method for studying the stability of phylogenetic analyses
by taking random or ordered subsamples of loci and comparing phylogenetic analyses of
those subsamples. The method is made possible by the large number of loci made available
by application of next-generation sequencing methods to phylogenetic questions. My labo-
ratory has used phylogenomic subsampling to investigate the consistency and stability of
various methods of phylogenetic analysis of multilocus data sets, including the so-called spe-
cies tree methods, which use the multispecies coalescent as a framework for interpreting
gene tree heterogeneity. I was inspired to focus on this method for this symposium volume
because my Harvard colleague Gonzalo Giribet had independently been using phyloge-
nomic subsampling to explore various questions in invertebrate phylogenomics. Phyloge-
nomic subsampling has many useful applications in phylogenomics, yet when reporting the
particulars of the results of such analyses, care should be taken to focus primarily on dis-
crepancies that achieve a high level of support by the bootstrap or other methods. Using a
recently published example, I show that the methods used to summarize the results of a
subsampling experiment, such as the threshold for reporting support for one or another tree
or clade, can influence the perceived success or failure of concatenation or species tree
methods. Single- versus double-bootstrapping is also shown to produce different subsam-
pling results. I suggest guidelines for analysing and reporting the results of phylogenomic
subsampling and suggest that it should become a routine part of phylogenetic analysis in the
next-generation era.
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Introduction
In the Department of Organismic and Evolutionary
Biology at Harvard, as is probably true in many university
departments, we have a saying that we tend to see our col-
leagues more often on the road, at conferences, than at
home. Although not strictly true, given the rarity with
which professors assemble to hear their own colleagues dis-
cuss their research, we infrequently hear what our depart-
mental colleagues have been up to research-wise unless at a
conference. Even more surprising is the situation that arises
when one realizes that one’s own research has been travel-
ling along a similar path as one’s departmental colleague,

only to be discovered at a far away conference. Such was
my experience at the 2015 special symposium on phyloge-
netics assembled by Zoologica Scripta.
Systematics being what it is – a discipline often divided

by taxon such that vertebrate phylogeneticists rarely inter-
act with those working on invertebrates – it had been sev-
eral years since I had heard my dear friend and colleague
Gonzalo Giribet discuss his impressive research on phy-
logenomics of metazoans, including molluscs, chelicerates
and many other invertebrate clades. Aside from the excite-
ment of hearing about the heroic efforts of his laboratory
to resolve various clades and higher taxa, in particular I
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was struck by his discussion of his paper on phylogenomics
of Arachnida (Sharma et al. 2014) in which he presented
their use of phylogenomic subsampling to study the signal
of various data sets in resolving various clades of spiders. I
was particularly surprised because my own laboratory had
been using phylogenomic subsampling for a variety of pur-
poses, in particular to study the accumulation of signal for
various clades with different-sized data sets and in particu-
lar to compare the behaviour of concatenation approaches
with the so-called species tree approaches when analysing
data sets of different sizes (Song et al. 2012). I had known
about the challenges of matrix occupancy – the challenges
of obtaining a high fraction of genes for all taxa in a phy-
logenomic analysis, particularly when analysing highly
divergent groups – that Giribet and his colleagues had
grappled with in their efforts to resolve metazoan phy-
logeny, and their efforts to study its consequences (e.g.
Dunn et al. 2008; Hejnol et al. 2009). But in the Arachnid
paper, and, as I later learned, in even earlier papers from
collaborative work (Hejnol et al. 2009), I learned that the
Giribet laboratory had begun to use subsampling routinely
to test various phylogenetic hypotheses and their behaviour
with different-sized data sets. The convergence of research
practice that I witnessed at the Zoologica Scripta meeting
inspired me to focus this contribution on the practice of
phylogenomic subsampling. Clearly, the practice is becom-
ing more widespread (Narechania et al. 2012; Simon et al.
2012), yet it is being used in a variety of ways and for a
variety of purposes, and has shed light on different facets
of phylogenomic analysis, depending on how it is deployed.

Phylogenomic subsampling
To my knowledge, phylogenomic subsampling has not yet
been defined, or really even coined, and the term likely
means different things to different researchers. For the pre-
sent purpose, phylogenomic subsampling can be defined as
a phylogenomic protocol in which loci are sampled at ran-
dom to create different-sized locus-by-species matrices,
with the goal of exploring the stability of a phylogenetic
hypothesis (Song et al. 2012). Many kinds of subsampling
have been employed throughout the history of phylogenet-
ics and phylogenomics. Historically, phylogenomic subsam-
pling emerged from the practice of subsampling characters
or assessing the consequences of different trees or data per-
turbations to test for stability of phylogenetic hypotheses
(Davis et al. 1993; Bremer 1994; Gatesy et al. 1999a,b;
Giribet & Wheeler 2003). As phylogenomic data sets
increased in size, researchers began exploring the effects of
subsampling on the scale discussed here, with random
removal of both sites and loci, albeit solely within a con-
catenation framework (Rokas et al. 2003). Bootstrapping
can be considered a type of subsampling in which

pseudomatrices of the same size are generated as a means
of assessing the strength of support for particular phyloge-
netic hypotheses (Felsenstein 1985). And of course, with
traditional bootstrapping, it is sites within and between
concatenated genes, not entire loci, that are sampled with
replacement to create the pseudomatrices. Multilocus boot-
strapping has been explored by Seo (2008; see also Seo
et al. 2005), where, for example, he compared the perfor-
mance of sampling sites within loci vs. entire loci vs. sam-
pling sites and loci in large multilocus data sets.
Phylogenomic subsampling can be distinguished from these
other types of sampling in its explicit focus on comparing
matrices of increasing size, and in exploring the ability to
recover a given clade under phylogenetic analysis of those
matrices. The Random Addition Concatenation Analysis
(RADICAL) approach of Narechania et al. (2012) captures
many of the aspects of phylogenomic subsampling dis-
cussed here, albeit solely within a concatenation framework
as applied thus far. Simmons et al. (2016) explored the
effects of subsampling of previously estimated gene trees
on species tree estimation, examining both random subsam-
ples and subsamples ordered by average Robinson-Foulds
(1981; RF) distance to other gene trees. They provide a
number of suggestions for testing the robustness of species
tree methods via sampling of different subsets of gene
trees. However, their approach only subsampled gene trees
and, by neglecting to subsample sites within alignments for
each gene tree, ignored the uncertainty of each gene tree
estimate and hence overinterpret the significance of their
gene tree estimates and associated RF distances (see below).
Subsampling can also be performed on taxa, and although
we and others have explored this approach (Song et al.
2012), often called jackknifing in past studies. To our
knowledge, jackknifing has not yet been scaled up in a way
deserving of the term ‘phylogenomic’.
The study of the information content of phylogenomic

matrices of different sizes has been used recently for many
different purposes (Fig. 1). Many studies have studied the
effect of matrix occupancy and missing data on their partic-
ular phylogenomic analysis, particularly when the full
matrix is relatively sparse (e.g. Dunn et al. 2008; Hejnol
et al. 2009; Sharma et al. 2014; Katz & Grant 2015). For
example, there has been some debate in the literature as to
whether sparse matrices, in some cases missing as much as
90% of the cells in a locus-by-species matrix, have reliable
phylogenomic information content. One of the early ‘shots
across the bow’ in this debate came from Driskell et al.
(2004), who suggested that large matrices in which nearly
80% of the data were missing nonetheless had significant
information content in resolving the tree of life when anal-
ysed in a supermatrix or concatenation framework. Several
studies have gone on to show that supermatrices that are
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sampled very sparsely nonetheless can possess significant
phylogenetic signal (Dunn et al. 2008; Hejnol et al. 2009;
Sharma et al. 2014). Although many of these early phyloge-
nomic studies exhibited promising signal even when using
very sparsely populated matrices, there is an undeniable
trend in the field towards generating more complete matri-
ces (Katz & Grant 2015; Sharma et al. 2015). In the way in
which I use the term, phylogenomic subsampling is applied
primarily to fully populated or near-populated matrices,
that is matrices in which all or nearly all the species have
been sampled for all genes. In this case, subsampling is not
used to test whether missing data is influencing a particular
phylogenetic analysis (Wiens 2006; Jiang et al. 2014).
Rather it is used principally to study the stability of various
clades with phylogenomic matrices of different sizes, with
the prediction that clades should in general exhibit
increased bootstrap or other support as matrix size
increases.
It is beyond the scope of this brief review to discuss the

pros and cons of different next-generation sequencing
methods in generating large but strongly populated phy-
logenomic matrices, a topic that has been covered else-
where (Lemmon et al. 2012). An informal survey of the
literature and discussions with colleagues suggests that
depending on the temporal depth of phylogenetic compar-
isons, transcriptomes can sometimes be challenging as a
means of generating strongly populated matrices, particu-
larly among deeply diverged lineages. Hybrid sequence
capture methods, especially those leveraging the phyloge-
netic relationship and estimated ancestral sequences of loci,

may well prove better at generating strongly populated
matrices at deep phylogenetic depths (Lemmon & Lem-
mon 2013; Bragg et al. 2015; Brandley et al. 2015; Potter
et al. 2016). The Rad-seq method has initially been applied
to shallow divergences at the phylogeographic level, yet is
being used more frequently for deeper divergences, albeit
thus far primarily in a concatenation framework (Cruaud
et al. 2014; Leache et al. 2015; Zimmer & Wen 2015). At
both shallow and deep divergences, however, Rad-seq can
sometimes yield patchy matrices (Edwards et al. 2016b).
These matrices, even when reduced to fully or mostly
occupied matrices, provide substantial resolution at many
taxonomic levels, yet, if only for financial reasons, research-
ers generally prefer maximizing the size of fully occupied
matrices. Improved laboratory methods, including new
next-generation sequencing platforms that yield longer
reads, as well as better bioinformatics pipelines, will likely
contribute strongly to more fully occupied matrices for
phylogenomics in the future (Bi et al. 2013; Jones & Good
2016).

Phylogenomic subsampling and species trees
Phylogenomic subsampling has been useful retrospec-
tively, for studying the effects of sparsely sampled matri-
ces on phylogenetic analysis, but will also be useful for a
future in which large, fully occupied matrices are the
norm. The use of phylogenomic subsampling in my labo-
ratory was first used by my collaborators and me as a
means of testing the stability of various phylogenetic
methods and their consistency across different data sets

Phylogenomic subsampling

Random subsampling
of loci

Ordered addition
of loci

Comparing
stability of

phylogenetic methods
or data sets

Assessing
the effect

of evolutionary rate on
phylogenetic analysis

Assessing
the effect

of missing data on
phylogenetic analysis

Fig. 1 Overview of uses of phylogenomic subsampling. Two types of subsampling are indicated, those which sample loci at random (the
main method discussed in this paper) and those that add loci to matrices of increasing size in some ordered fashion (e.g. by increasing
evolutionary rate). Phylogenomic subsampling has been used for three main purposes, as discussed in the text: to test the stability of various
phylogenetic methods on matrices of different size and composition; to test the effect of differences in evolutionary rate on phylogenomic
analysis; and to test the effects of missing data on phylogenomic analysis. This paper focuses on (and advocates the use of) subsampling
primarily for the leftmost purpose, but acknowledges the use of ordered subsampling as well. As matrices become increasingly occupied
(e.g. filled with sampled loci, as opposed to empty), the rightmost purpose will become less important.
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(Song et al. 2012). As previously stated, we knew of the
extensive use of ‘downsizing’ character matrices to achieve
use as a means of concentrating signal and reducing the
effects of missing data on phylogenetic analysis. Still, and
somewhat surprisingly (although perhaps not for Har-
vard), our use of subsampling was completely independent
of its use in the Giribet laboratory, only two floors above
in the Museum of Comparative Zoology Laboratories!
This is all the more surprising as the Giribet laboratory
began to expand its use of subsampling from exploration
of patchy matrices to also studying the consistency of
specific clades across data sets. We essentially converged
on the approach by different routes. In our case, my lab-
oratory arrived at subsampling after several years of
developing methods for inferring phylogenetic trees, or
‘species trees’, that allowed the underlying gene trees to
vary from locus to locus. We use a model, the multi-
species coalescent (MSC) model, that provides an elegant
means of assessing the likelihood of an overarching spe-
cies tree in the presence of gene tree variation that is
dominated by incomplete lineage sorting (ILS; Rannala &
Yang 2003, 2008; Degnan & Rosenberg 2009; Liu et al.
2009a, 2015b). As reviewed extensively elsewhere, there is
now a diverse ecosystem of species tree methods, ranging
from Bayesian to likelihood to summary statistic methods,
and which can handle a variety of data types, from multi-
ple SNPs linked into single loci to multiple unlinked
SNPs (Bryant et al. 2012; DeGiorgio et al. 2014; reviewed
in Edwards 2016). These methods are known to vary in
their efficiency and also in their ability to handle large
data sets, with Bayesian methods being the desired goal,
specifying the MSC completely but unable to handle
large data sets, and summary statistic methods being less
efficient, but still statistically consistent and able to han-
dle data sets befitting the title ‘phylogenomics’. The con-
sistency of a species tree method is confirmed by its
estimation of the correct species tree across the full
parameter space of the MSC, especially in the so-called
anomaly zone, a region of species tree space that gener-
ates a distribution of gene trees where the most common
gene tree differs from the species tree (Degnan & Rosen-
berg 2006; Rosenberg 2013) – a region in which super-
matrix approaches are guaranteed to be inconsistent. We
view the supermatrix approach not as antithetical to the
MSC but as a subset of it, a model in which all gene
trees are forced to be the same and presumably identical
to the species tree (Liu et al. 2015b; Edwards et al.
2016a). Our enthusiasm for species tree methods has been
recently strengthened by the observation that the anomaly
zone, originally just a theoretical curiosity and believed to
be unlikely in nature, is strongly implied if not demon-
strated in a number of empirical studies, including some

unpublished studies in our laboratory (Huang & Knowles
2009; Linkem et al., 2016).
Specifically, our first use of subsampling had the goal of

comparing the performance of supermatrix (concatenation)
and MSC methods to phylogenetic reconstruction. We fol-
lowed a simulation and reporting protocol that we encour-
age others to follow (Song et al. 2012):

1. Determine a relatively well-occupied phylogenomic data
matrix for a given set of taxa. Choose a specific set of
branches or clades to test for stability via subsampling.
This might best be done a priori but in the case of
Song et al. (2012) we chose clades that differed strongly
between supermatrix and MSC analyses.

2. According to Seo (2008), subsample columns of loci, as
well as sites within loci, at random with replacement, cre-
ating pseudomatrices of different and increasing numbers
of loci, for example, from an original matrix of 500 loci,
one could subsample matrices of 10, 20, 50, 100, 200 and
up to 500 loci. Sampling only sites within loci, but not
the loci themselves, will likely yield different results that
may not capture the complexities of the data (Seo 2008).

3. Each subsampling should be replicated at least 10 times
within each matrix size class.

4. Build a phylogenetic tree by whatever method on each
of the replicates within each size class.

5. For each tree, assess the bootstrap or other support of
the clade(s) identified in step 1.

6. Summarize the distribution of support for the clade or
alternative incompatible clades across replicates and
pseudomatrix sizes in a form that captures the full range
of support values observed. For example, a heat map is
a useful way of recording the incidence of high boot-
strap support for the chosen clade, or a conflicting
clade, or simply equivocal support for the clade (less
than some bootstrap threshold value).

In our paper on mammals (Song et al. 2012), we used a
heat map to report the distribution of support values for
our phylogenomic subsample, which is reproduced using a
corrected data set (Wu et al. 2015) in Fig. 2. We thought
this representation was useful because we assumed that
replicates in which a specific clade of interest was recovered
at less than some threshold value (in the case of Song et al.
2012, 90%) could be considered ‘non-committal’ with
respect to that clade. However, replicates in which a clade
is recovered with high support could potentially reveal situ-
ations in which such support could actually be recovered in
a traditional phylogenetic analysis of that data set. Record-
ing such events becomes even more critical as one observes
the support for that clade in data sets of different sizes, or
in different replicates of the same size. Our choice of a
90% bootstrap threshold was ultimately arbitrary, but we
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found that it highlighted well the differences in behaviour
of concatenation vs. species tree approaches, which was one
of our goals.
What we observed in the mammal data set was a surpris-

ing tendency for supermatrix analyses, specifically those
using RAxML, to ‘flip-flop’ between strong support for a
clade on the one hand, and an alternative, incompatible
clade on the other, even within replicates of the same matrix
size, and even more regularly across matrices of different
sizes (Fig. 2). By contrast, we found that clades estimated
using phylogenetic methods employing the MSC (MP-
EST is used here; Liu et al. 2010) generally exhibited

gradually increasing bootstrap support with increasing
matrix size, without evidence of jumping back and forth
between strong support alternative, conflicting topologies.
A similarly smooth approach to high support was found in
a study on coelacanth relationships (Liang et al. 2013).
Here we reanalyse the data of Song et al. (2012) using cor-
rected data and the same analysis pipeline as in Song et al.
(2012). We used RAXML version 7.0.4 (Stamatakis 2006) to
build gene trees from concatenated data. For species tree
construction, we used PHYML v. 3.0 to estimate gene trees
and MP-EST v. 1.2 (Liu et al. 2010), and PHYBASE version 1.4
(Liu & Yu 2010) to conduct multilocus bootstrapping (see
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Fig. 2 Phylogenomic subsampling results for mammals in Song et al. (2012) using a corrected data set (Wu et al. 2015). This analysis uses the
data of Song et al. (2012) but with 21 misannotated gene trees noted by Mirarab et al. (2014) corrected here. A typical command line for
RAxML on concatenated data was as follows: raxmlHPC -f a -x 12345 -p 12345 -# 100 -m GTRGAMMA -s 447genes.phy -n 447
genesoutfile. A typical command line for using Phyml to construct gene trees for MP-EST analysis was as follows: phyml –i seq_file –mGTR.
In panel A, the gradual approach to statistical significance of three clades of mammals is illustrated across subsamples of increasing size. Only
averages across the 10 replicates for each subsample are shown. In panel B, each replicate of each subsample is colour-coded according to the
favoured topology for that replicate and whether or not the results for that subsample achieved a bootstrap support of >90%. If a replicate did
not achieve 90%, the cell is left white. A second row of results for concatenation is shown, focusing on the sister to Carnivora, because some
results of this clade (e.g. at 50 gene subsamples) conflict with results for the sister to Cetartiodactyla in the row above. Other authors (Springer
& Gatesy 2016) have suggested additional errors in the Song et al. (2012) alignments, but many of these errors and their effect on the results
of Song et al. (2012) are disputed (Edwards et al. 2016a). The numbers from which these figures were drawn can be found in Table S1.
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legend Fig. 2 for additional details). I used the ‘sumtrees’
module in Dendropy to count clade frequencies in boot-
strap replicate species trees (Sukumaran & Holder 2010,
2015). Mirarab et al. (2014) discovered some errors in 21
of the 447 genes used by Song et al. (2012) to study mam-
mal phylogeny. Wu et al. (2015) reanalysed the corrected
data set and found that the conclusions of Song et al.
(2012) were unchanged. However, the results of that analy-
sis have not yet been presented in detail. Figure 2 and the
Supporting Information present a reanalysis of the cor-
rected data of Song et al. (2012). Surprisingly, we found
that the tendency for concatenation to flip-flop with high
support for conflicting topologies across different subsam-
pling replicates was even more severe than in the original
study. Strongly conflicting topologies were recovered using
concatenation (RAxML) not only for small numbers of
genes, but also for moderate numbers (~100).
It was at the Oslo meeting that I learned that Giribet’s

laboratory had observed exactly the same pattern in their
studies of arachnid phylogenomics (see fig. 5 of Sharma
et al. 2014), albeit with an important twist. Whereas our
protocol specifically sampled loci (columns) at random to
create pseudomatrices, Sharma et al. (2014) did not sub-
sample at random, but rather added loci in order of
increasing evolutionary rate to create increasingly large
matrices, without replication within size classes (Narecha-
nia et al. 2012; Simon et al. 2012). They observed that for
some clades (e.g. Chelicerata, Tetrapulmonata and, to a
lesser extent, Acariformes+ Pseudoscorpions and Ricin-
ulei + Xiphosura, among others), bootstrap support gradu-
ally increased as faster evolving loci were added. However,
other clades, such as Ricinulei + Solifugae, Acari + Pseudo-
scopiones or Arachnida itself, exhibited the same type of
‘flip-flopping’ as we had observed in the mammal data set.
Although Sharma et al. provide compelling evidence that
the effects of evolutionary rate in their study were distinct
from the effects of matrix occupancy, technically, it seems
to me, given their framework, they cannot distinguish the
effects of increasingly large matrices on their results from
matrices increasingly dominated by faster evolving loci. To
distinguish whether evolutionary rate or matrix size most
strongly influence support values in a phylogenetic context,
one would have to conduct a simulation and, say, for the
500-locus class of matrices, build multiple matrices includ-
ing only fast or slow loci, or a mix of the two. Then one
could observe the behaviour of specific clades across these
data sets and potentially disentangle the effects of increas-
ing evolutionary rate from those of matrix size (as opposed
to matrix occupancy). This is precisely what Sharma et al.
(2015) subsequently did in their updated approach in a
recent paper on scorpions, where the entire matrix was par-
titioned into equally large tertiles of slow-, medium- and

fast-evolving loci. Interestingly, that subsampling protocol
made no difference in the support values they observed for
that data set. Katz & Grant (2015), Sun et al. (2016) and
others have tested the effect of removing fast sites from
concatenated alignments. Results of such an analysis tend
to vary by study: Katz & Grant (2015) found little
improvement in signal with removal of fast sites. By con-
trast, Sun et al. (2016) and Xi et al. (2014) found very
marked effects of including or excluding fast sites from
alignments, the latter especially when analysed by concate-
nation methods.
Additionally, whereas in Song et al. (2012) both super-

matrix and MSC methods were included and compared,
Sharma et al. (2014) only studied the behaviour of a super-
matrix approach, namely RAxML (although they did
explore the effects of another concatenation approach, Phy-
loBayes (Lartillot et al. 2013), finding very similar results to
RAxML). Still, the similarity in results between our two
papers was striking, at least for the case of concatenation.
And, appropriately, their conclusion from these analyses
was a general one, namely that significant phylogenetic
conflict existed in their data. For the Arachnida paper,
Sharma et al. (2014) perhaps favoured the supermatrix
approach due to the patchiness of the data set (P. Sharma,
pers. comm.). By contrast, in their recent scorpion paper
(Sharma et al. 2015), which was characterized by a much
more complete character matrix, both supermatrix and spe-
cies tree methods recovered the same basal topology.

Single vs. double bootstrap subsampling
Seo (2008) described several types of bootstrapping that
could be applied to multilocus data and analysed their per-
formance under concatenation and multilocus sequence
data. He outlined a ‘2-stage’ bootstrap procedure (what we
call ‘double bootstrapping’ here) in which both loci and
sites within loci are sampled with replacement to create
pseudo-data sets for phylogenetic analysis (his B3 method).
He compared the performance of double bootstrapping
with traditional bootstrapping (his B1 method) as well as
bootstrapping only across sites within loci (what we call
‘single bootstrapping’; his B2 method). In concatenation or
supermatrix studies, bootstrapping is usually performed
without reference to the locus from which a site is sampled;
even though great pains are often used to model the substi-
tution dynamics of individual loci (‘partitioning’), boot-
strapping is almost always conducted while ignoring the
multilocus structure of the data. Seo (2008) found that tra-
ditional bootstrapping in a concatenation framework, in
which sites (columns) are sampled at random without
regard to locus length or membership, produced gross
over- and underestimations of support during bootstrap-
ping, especially with smaller numbers of genes where
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individual genes can dominate the signal. He also found
that double bootstrapping was more successful at capturing
the variation in the data than either single or traditional
bootstrapping.
In the course of reanalysing the data in Song et al.

(2012; Wu et al. 2015), we found some interesting differ-
ences in results depending on the type of bootstrapping
employed (Fig. 3). Song et al. (2012) employed double
bootstrapping in their original study, although when the
full data sets (447 loci) were analysed, only a single repli-
cate was analysed (instead of 10). We found that single
bootstrapping generally gave lower support for the species
tree for smaller data sets (<200 loci), but that the support
exceeded the support yielded by double bootstrapping for
the largest data sets in two of three clades tested (Fig. 3;
Supporting information). In the case of the Scandentia
(tree shrew)–Primate relationship that resulted from analy-
sis of the full data set using species tree methods, single
bootstrapping yielded lower support than double bootstrap-
ping for all data sets, sometimes differing from double
bootstrapping by over 40 percentage points (in the case of
300 loci). For the other two clades, the point at which sin-
gle bootstrapping support exceeded that of double boot-
strapping varied from 200 loci for the Cetartiodactyla–
Perissodactyla–Carnivora clade to the full data set for the
Cetartiodactyla–Perissodactyla clade. Single bootstrapping
tests the uncertainty in individual gene trees and potential
for gene tree error (Roch & Warnow 2015), with the over-
arching assumption that the gene tree distribution is as

expected. Double bootstrapping tests both gene tree and
gene distribution uncertainty and provides a more general
test of the efficacy of species tree methods. However, even
when studying the stability of species tree methods, single
bootstrapping is sometimes used when “very large” data
sets are analyzed (here, “large” is arbitrarily defined), as in
Jarvis et al. (2014). Clearly, we need additional studies to
understand the behaviour of single vs. double bootstrap-
ping in phylogenomics in general and in subsampling in
particular.
Simmons et al. (2016) explored the effect of subsampling

of gene trees on species tree estimates. Because they only
subsampled gene trees and did not explore the uncertainty
of each gene tree estimate via bootstrapping, their single
bootstrap approach was different yet again from the meth-
ods suggested by Seo (2008). They make some useful sug-
gestions for testing the robustness of various species tree
methods, but their evaluation of species tree methods is
flawed. By focusing solely on clades ‘contrary’ to specific
reference clades, and RF distances of point estimates of
both gene trees and species trees, without interrogating the
uncertainty of these point estimates, they overinterpret the
apparent conflict and incongruence in many of their tests.
Many of the incongruences and large RF distances of gene
and species trees they discovered in their analyses likely
differ inconsequentially from their reference trees by
branches with low bootstrap support, a prediction that dou-
ble bootstrapping could confirm or reject. I believe gene
tree subsampling could be a useful tool in species tree anal-
ysis but only while acknowledging that any point estimate
of a gene or species tree has a variance that may render its
perceived ‘conflict’ with or large RF distance from a refer-
ence tree less meaningful.

An example and a comment
Recently, Richart et al. (2016) used phylogenomic subsam-
pling to compare the performance of MSC and supermatrix
methods in another study of arachnid phylogeny (Richart
et al. 2016). Specifically, starting from a matrix of ~672 loci
for five species (three in-group and two out-group taxa),
they used a phylogenomic subsampling protocol very simi-
lar to the 6-step protocol reported above, proceeding in
increments of 25–100 loci. However, they diverged from
our protocol in one key aspect, namely they reported in
their main text the average bootstrap support for a given
clade across replicates in the same matrix size class, and did
not report a the ranges and distribution of bootstrap values.
Their focus of interpretation was on average support values
within and across replicates, whereas the focus in Song
et al. (2012) was also on the full range of support values
within and across replicates. Although seemingly a trivial
difference from our protocol, I believe this led to a bias in
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Fig. 3 Phylogenomic subsampling and the accumulation of signal in
the Song et al. (2012) mammal data with single bootstrapping and
double bootstrapping. The corrected data (Wu et al. 2015) were
used to subsample using single bootstrapping and double
bootstrapping (Seo 2008). The stability of three clades was analysed
as in Fig. 2. See main text for further details. The numbers from
which this figure was drawn can be found in Table S1.
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their interpretation of their results. Focusing exclusively on
average support values within and across replicates, they
observed a trend in supermatrix analyses towards 100%
bootstrap support for several clades believed to be correct,
whereas for the MSC methods they used (MP-EST and
STAR; Liu et al. 2009a, 2010), the average support for
these clades never reached 100%, but instead stayed gener-
ally below 80%, even for the largest matrices. They inter-
preted this result as evidence that supermatrix approaches
were more efficient and more accurate than MSC
approaches in this case, and suggested that ‘our example
does not support this claim’ by Edwards et al. (2016a) that
phylogenomic subsampling reveals inconsistencies in con-
catenation. However, in failing to discuss anything about
the range of support values within and across replicates,
they neglected to report a troubling signal in their data.
First, I believe the heat map they produce in their Support-
ing Information is misleading, in so far as it categorizes
trees that recover different relationships within the same
replicate (e.g. 25, 50 or 100 loci) as different, regardless of
the bootstrap support they achieve. Thus, for example, cells
in their supplementary heat maps receive different colours
when one clade receives 61% support vs. when an alterna-
tive clade receives 66% support. This protocol gives the
unjustified impression that both MSC and supermatrix
approaches frequently produce the ‘flip-flopping’ results

that we observed in Song et al. (2012), although such a
conclusion would not be justified for many of the repli-
cates. We suggest that such discrimination is not meaning-
ful because it portrays results as different that arguably
receive no statistical support for making any statement
about phylogenetic relationships. The subsampling analysis
by Simmons et al. (2016) similarly tried to evaluate various
species tree methods using RF distances of estimated trees
from a reference tree but ignoring the strength of support
for those estimates. In a similar vein, Richart et al. (2016)
were surprised by the fact that the STAR method (Liu
et al. 2009b) produced an unexpected topology for one of
the 600-locus replicates, yet this topology was only sup-
ported at the level of 53%! We reject their suggestion that
STAR has performed poorly in this case and suggest that
such low-support results do not warrant attention in phy-
logenomic analyses.
When we reproduce their heat map using the colouring

protocol of Song et al. (2012; Fig. 4), in which only cells
achieving >90% support are reported, we see how the
impression of flip-flopping is eliminated, with cells corre-
sponding to MSC methods largely being coded as white,
indicating lack of definitive support. Second, as observed in
their supplementary material, the range of support values
for supermatrix analyses is indeed much wider than for
MSC analyses, and their supermatrix analyses recover
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Fig. 4 Reinterpretation of phylogenomic subsampling results from Richart et al. (2016). On the top row is the coding of individual
subsamples from Richart et al.’s analysis of spider phylogenomics. In the top row, cells are coloured according to which phylogeny, (H,S(A)
in blue or (A,H)S) in orange, is favoured, regardless of bootstrap support for that replicate. A = Acuclavella, S = Sabacon,
H = Hespernemastoma. In the lower row is the recoding of the subsampling cells according to the metric of Song et al. (2012), whereby
cells receive no colour coding if the bootstrap support for that replicate was less than 90%. A cell receives colour coding according to the
subtree favoured by that replicate if the bootstrap support was ≥90%. Clear evidence of erratic behaviour of concatenation appears in
subsamples of 25 and 50 genes, whereas no such erratic behaviour is observed for species tree approaches or by concatenation for larger
samples of genes. We also recalculated average bootstrap support for the 10 replicates for each subsample in Richart et al. (2016), reported
below the top row of matrices and found three discrepancies with their calculations, indicated in red.
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situations in which both a clade and an incompatible alter-
native are recovered with high (>90%) support within and
between the 25 and 50 gene replicates. Indeed, supermatrix
analyses recover such flip-flopping at a higher rate than
MSC methods. Thus, I feel that their rejection of our
claim stated above is not justified. Such flip-flopping of
concatenation analyses, particularly when analysing small
numbers of genes, was recognized in early subsampling
studies (e.g. Rokas et al. 2003).
We agree that their analysis is broadly, but not fully,

consistent with the idea that in some cases, supermatrix
analyses will converge to phylogenomic certainty (high sup-
port for a given clade) more quickly than will MSC meth-
ods. This tendency has been known for several years
(Edwards et al. 2007; Bayzid & Warnow 2013), yet it
should not necessarily be taken as a ‘win’ for concatenation,
because without deeper study one never knows whether full
support for a clade represents true or spurious signal.
Another example already mentioned in this context is sup-
port for Arachnida in Sharma et al. (2014), which received
100% bootstrap support in the partition of 500 slowest
evolving genes, but whose non-monophyly also receives
100% bootstrap support as matrices surpass the 2000-locus
mark. The fact that strong conflicting results are seen with
concatenation only among the smaller subsamples (25 and
50 genes) may suggest a trend, similar to predictions of
Seo (2008), but the reanalysis of Song et al. (2012) data
(Fig. 2) suggests that subsamples of larger numbers of gene
can still yield incongruent results.
Additionally, we have known for a while, and many simu-

lation studies have shown, that when ILS is minimal, con-
catenation will recover the correct tree topology with greater
efficiency than will MSC methods (Liu et al. 2015a; Mirarab
et al. 2016). But such rapid approach to certainty as matrix
sizes increase – you can call it ‘efficiency’ if you want – is not
necessarily evidence of a method accurately reflecting the
true rate of increase of certainty. We and many others have
suggested that supermatrix approaches often unnaturally
inflate support values because they represent strong viola-
tions of the MSC and of the conditional independence of
loci that genomes exhibit even when ILS is low or absent
(Edwards et al. 2007; Liu et al. 2010, 2015b,c; Xi et al. 2016).
It is certainly comforting – but of course, potentially addict-
ing – to achieve 100% support for a hypothesis that is topo-
logically correct but should only receive 75% support given
the data collected. Such a situation hardly engenders real
confidence. The Richart et al. (2016) study also suffers from
the very low number of taxa analysed; although they suggest
that their results are driven primarily by biological signals,
they do not rule out statistical artefacts, and, with only three
in-group taxa, we agree that long-branch attraction and
other artefacts are a worry.

Examining their analysis from the contrasting perspective
of MSC methods, the tendency in the Richart et al. (2016)
analysis for MSC methods to recover many clades across
replicates only weakly and their failure to show increasing
support across replicates as matrix size increases could be
taken as a positive, because there is by necessity no ‘flip-
flopping’ or if the topology recovered by concatenation is
wrong, a conclusion that we agree is unlikely. The pattern
of support for MSC analyses in their study could also mean
that the assumptions of the MSC have been violated.
Indeed, Richart et al. (2016) go to great lengths to demon-
strate violations of the MSC model in their data, by explor-
ing triplet frequencies, for example a practice that we
encourage. Although we dispute their conclusion that such
violations of the MSC vindicate supermatrix approaches
(see Edwards et al. 2016a), we believe such testing of basic
predictions of the MSC model are a positive step for phy-
logenomics (see also Tarver et al. 2016). In the end, their
subsampling analysis also reveals the same tendency for
supermatrix analyses to flip-flop as shown in Song et al.
(2012), but their focus on average support values tends to
mask the underlying erratic behaviour in some replicates.
We encourage the community, as well as software focused
on subsampling (e.g. Narechania et al. 2012) to report the
full range of, as well as average for, support values in sub-
sampled analyses.

Conclusion
Phylogenomic subsampling should become a standard
practice in phylogenomics, at least until we have discov-
ered and can potentially predict trends and patterns of
support in phylogenomic data sets. For the first time in
phylogenetics, we are assembling data sets that are large
enough to allow subsampling in a way that robustly
explores the effects of different parameters on phyloge-
nomic results. We have seen how phylogenomic subsam-
pling has had several uses throughout its brief history: it
has been used to study the effect of missing data on phy-
logenomic results, to measure the effect of increasing evo-
lutionary rates on phylogenomic results and to compare
the consistency of different methods of phylogenomic
analysis. Given the increasing ease of producing relatively
full matrices, we believe phylogenomic subsampling has
particularly important uses with regard to the latter two
goals. Phylogeneticists can explore the impact of matrix
size, composition and evolutionary rate using a subsam-
pling design that controls for each of these while explor-
ing variation in other variables. We believe that both
random subsampling of phylogenomic matrices and
ordered addition of loci to increasingly large matrices
(Narechania et al. 2012; Simon et al. 2012) have a place
in modern phylogenomics. An important use of
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phylogenomic subsampling is likely as a test for the con-
sistency of a particular phylogenetic method across sub-
sampled matrices of different size and composition. Such
a practice is undertaken under the reasonable assumption
that strength of support for a given clade should increase
with increasing matrix size, and should not jump errati-
cally between high support for multiple phylogenetic
hypotheses. In the pre-next-generation era, data sets of
even a few tens of loci were achieved with such painful
effort that the results of analysis of the largest matrix pos-
sible were usually taken as the best estimate. Now, in the
next-generation era, matrices are so large that we can
envision situations where smaller (perhaps more complete
or less biased) matrices may actually perform better than
large ones that include conspicuous gaps or a greater
diversity of conflicting signals. Phylogenomic subsampling
is a useful addition to other increasing practices, such as
data filtering, whether based on parameters of the loci or
on some a priori phylogenetic hypothesis (Narechania
et al. 2012; Chen et al. 2015). At the very least, the writ-
ing of this brief review, and especially my fortunate atten-
dance at the Zoologica Scripta meeting in Oslo, revealed a
case of parallel evolution between the phylogenomic prac-
tices of vertebrate and invertebrate systematists – even
those working under the same roof in Cambridge!
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Supporting Information
Additional Supporting Information may be found in the
online version of this article:
Table S1 Bootstrap values of specific clades from Figs. 2

and 3 for concatenation trees and species trees (MP-EST)
generated during 10 replicates of subsampling. Two types
of subsampling were used: single bootstrap (for concatena-
tion and MP-EST) and double bootstrap (MP-EST). For
convenience, the bootstrap values greater than or equal to
90% are highlighted in pink.
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