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can alligators may inform the evolution of sex-determining 
and sex-differentiating gene networks, as they suggest alter-
native functions from which the genes may have been ex-
apted. Future functional profiling of sex-differentiating 
genes should similarly follow other genes and other species 
to enable a broad comparison across sex-determining mech-
anisms.  Copyright © 2013 S. Karger AG, Basel 

 A complex network of genes involved with sexual de-
velopment is moderately conserved across amniotes 
[Marshall Graves and Peichel, 2010]. Several studies have 
shown similar actions of sex-differentiating genes in dif-
ferent species, and yet some amniotes determine sex 
based on chromosomal inheritance, while others respond 
more directly to environmental cues such as incubation 
temperature [Bull, 1983]. Still other groups appear to be 
susceptible to environmental influences, despite having 
differentiated sex chromosomes that largely dictate sex of 
offspring [Quinn et al., 2007; Radder et al., 2008]. In face 
of the conserved nature of the network of sex-differenti-
ating genes, differences in timing and tissues of expres-
sion of certain genes are expected to shed light on the 
mechanistic differences among clades exhibiting geno-
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 Abstract 

 Across amniotes, sex-determining mechanisms exhibit great 
variation, yet the genes that govern sexual differentiation 
are largely conserved. Studies of evolution of sex-determin-
ing and sex-differentiating genes require an exhaustive 
characterization of functions of those genes such as  FOXL2  
and  FGF9 .  FOXL2  is associated with ovarian development,  
 and  FGF9  is known to play a role in testicular organogenesis 
in mammals and other amniotes. As a step toward character-
ization of the evolutionary history of sexual development, 
we measured expression of  FOXL2  and  FGF9  across 3 devel-
opmental stages and 8 juvenile tissue types in male and fe-
male American alligators,  Alligator mississippiensis.  We re-
port surprisingly high expression of  FOXL2  before the stage 
of embryonic development when sex is determined in re-
sponse to temperature, and sustained and variable expres-
sion of  FGF9  in juvenile male, but not female tissue types. 
Novel characterization of gene expression in reptiles with 
temperature-dependent sex determination such as Ameri-
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typic sex determination (GSD) and temperature-depen-
dent sex determination (TSD). 

  In GSD species, a sex-determining gene initiates male 
or female embryonic development, whereas sex-differen-
tiating genes continue to shape sexual development sub-
sequent to the action of a sex-determining gene. While 
sex-differentiating genes are conserved across amniota, 
the initial determinant or trigger of sex determination 
varies within and between GSD and TSD amniotes [Bull, 
1983; Sarre et al., 2004; Organ and Janes, 2008]. Among 
GSD species, a sex-determining gene initiates the func-
tional cascade of sex-differentiating genes as a result of 
presence (as  SRY  in humans) or dosage (as  DMRT1  in 
chickens) [Sinclair et al., 1990; Smith et al., 2009]. How-
ever, it should be noted that  DMRT1  dosage alone may 
not entirely direct sex determination in chickens or other 
birds [Clinton et al., 2012; Küpper et al., 2012]. The male- 
or female-specific actions of sex-differentiating genes fol-
low that of a sex-determining gene in GSD or a thermally 
responsive element in TSD, although no such element has 
been discovered. Functional differences of sex-determin-
ing and sex-differentiating genes likely arose from a long 
history of shifts from one sex-determining mechanism to 
another or perhaps from gradual changes in sensitivity to 
environmental variables such as temperature [Sarre et al., 
2004; Radder et al., 2008; Grossen et al., 2011]. Clearly, 
sex-determining mechanisms and the action of one or
a series of sex-determining and/or sex-differentiating 
genes have changed in amniote history [Janzen and Phil-
lips, 2006; Organ and Janes, 2008; Pokorna and Kratoch-
víl, 2009]. To study the effect of these shifts on the func-
tion of sex-differentiating genes or vice versa, a complete 
characterization of gene function and expression patterns 
across a range of taxa and developmental stages is essen-
tial.

  To improve our understanding of the functional pro-
files of sex-differentiating genes, we characterized for the 
first time the relative expression of the 2 sex-differentiat-
ing genes forkhead box protein L2  (FOXL2)  and fibro-
blast growth factor 9  (FGF9)  in American alligators  (Al-
ligator mississippiensis) . American alligators exhibit TSD 
and lack gross chromosomal heteromorphy between 
males and females [Lang and Andrews, 1994]. We chose 
to examine these 2 genes because they are widely con-
served across amniotes and amplifiable in American al-
ligators, a model species for studies of sex-determining 
mechanisms [Lang and Andrews, 1994].

   FOXL2  is closely associated with ovarian development 
in mammals [Crisponi et al., 2001]. It is expressed in 
ovarian tissue before folliculogenesis and is thought to be 

the earliest marker of ovarian development in mammals 
[Cocquet et al., 2002].  Foxl2 -knockout mouse ovaries ex-
hibited abnormal development across 4 developmental 
stages, suggesting a sustained effect on ovarian function 
[Garcia-Ortiz et al., 2009]. Furthermore,  foxl2  has been 
implicated in ovarian development in fish [Nakamoto et 
al., 2006; Yamaguchi et al., 2007] and adult ovarian func-
tion in chicken [Govoroun et al., 2004]. Also, expression 
of  FOXL2  was studied within the thermosensitive period 
(TSP) during incubation in 2 species of TSD turtles [Rhen 
et al., 2007; Shoemaker-Daly et al., 2010]. In both turtle 
species,  FOXL2  expression was restricted to ovarian tis-
sue near the end of the TSP.

  The other gene,  FGF9 , plays a role in testicular organ-
ogenesis and has been shown to play a greater role across 
tissue types in mammalian embryos [Colvin et al., 2001]. 
Specifically,  Fgf9  is associated with development of Ley-
dig cells within testes and testicular steroidogenesis after 
birth in mice, such that mice lacking  Fgf9  exhibit male-
to-female sex reversal [Hiramatsu et al., 2009; Lin et al., 
2010]. These observations might suggest an expectation 
of male-biased expression of  FGF9  in alligators, but the 
gene has also been shown to play a role in ovarian proges-
terone production in rats, and sex-differential  FGF9  ex-
pression was not reported in the frog,  Rana rugosa , dur-
ing the sex-determining stage of embryogenesis [Yama-
mura et al., 2005; Drummond et al., 2007]. Alligators 
might be expected to exhibit an expression profile of sex-
differentiating genes that resembles that of mammals 
rather than that of amphibians, since mammals and rep-
tiles share a more recent common ancestor, despite their 
differences in mode of sex determination.

  Patterns of gene expression across developmental 
stages contribute important information to the functions 
of genes uncharacterized in nonmodel species. For ex-
ample, how do expression patterns of sex-differentiating 
genes before and after the TSP compare to patterns of ex-
pression within the TSP, in which they have been more 
commonly studied [Valenzuela, 2008, 2010]? We hypoth-
esize that changes in  FGF9  expression will demonstrate 
greater variability across stages in males than in females 
and across juvenile tissues, as this gene is known to func-
tion specifically within testes. Evidence collected so far 
suggests that the gene has a function in tissues other than 
testes [Lin et al., 2010], but its expression has not yet been 
investigated comprehensively, and the present study 
helps to fill that gap. Our experimental design permitted 
examination of  FGF9  and  FOXL2  expression in somatic 
tissues such as kidney and heart for the first time. Garcia-
Ortiz et al. [2009] reported expression of  Foxl2  at multiple 
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stages of mice, but not in multiple tissues, whereas our 
study tests the effects of both stage and tissue type on ex-
pression of sex-differentiating genes. Furthermore, here 
we test the hypothesis that changes in expression levels 
are detectable in embryos collected before and after the 
TSP, during which sex determination occurs in TSD spe-
cies [Bull, 1983]. The TSP marks the period, during which 
 FOXL2  and  FGF9  are known to act in a sex-differential 
pattern in other studies.

  Materials and Methods 

 Animals 
 Tissues were collected from 12 juvenile (6 male and 6 female) 

American alligators  (A. mississippiensis) , according to instructions 
from veterinary staff at Harvard University. Alligators, collected in 
Rockefeller Refuge, La., USA in 2007, were selected as juveniles 
( ∼ 61 cm in total length), representative of a developmental stage 
after hatching but before sexual maturity. From each juvenile, 
 ∼ 300 mg of brain, heart, lung, liver, muscle, kidney, gastro-intes-
tinal tract, and gonad-adrenal-mesonephros were sampled. In ad-
dition, 24 alligator eggs were collected from wild nests, and devel-
opmental stages of embryos were verified at the moment of collec-
tion by visual inspection according to Moore et al. [2008]. Samples 
were collected from alligator embryos that visually approximated 
stages known to occur before and after the TSP, during which sex 
determination occurs [Bull, 1983]. Sexing of juveniles was con-
ducted by external observation of genitalia and confirmed by mac-
roscopic gonadal inspection. Early-stage embryos were not sexed, 
as they were collected before the thermally sensitive sex-determin-
ing stage of incubation. Twenty late-stage embryos were incubated 
at either the female-producing temperature (28   °   C) of  A. mississip-
piensis  for 60 days or the male-producing temperature (33   °   C) for 
44 days. This sampling scheme ensured that embryos developed 
past their TSP at their respective incubation temperature [Lang 
and Andrews, 1994]. According to Derveaux et al. [2010], these 
sample sizes should suffice for establishing expression stability in 
representative samples of different tissues. Incubators were 
checked for heterogeneity in temperature and humidity, and eggs 
were rotated daily within each incubator to avoid spatial differ-
ences in incubation environment. During tissue collection from 
late-stage alligator embryos, gonadal sex was confirmed by macro-
scopic inspection [Moore et al., 2008]. From each embryo,  ∼ 300 

mg of gonad and surrounding adrenal and kidney tissue were col-
lected. Tissue samples were macerated with a scalpel, resuspended 
individually in 1.5 ml tubes with 400 μl of RNAlater (Sigma-Al-
drich, Cat. No. R0901) and stored at –80   °   C.

  cDNAs 
 Samples (250 mg) were later thawed on ice, homogenized with 

a rotor stator and filtered for total RNA extraction, using an 
RNeasy Midikit (Qiagen, Cat. No. 75144). Concentrations of ex-
tracted RNAs were measured with a NanoDrop ND-1000 Spectro-
photometer, and extracts were visualized on a gel for confirmation 
of quality by eye. Samples were diluted to equal concentrations of 
4.2 ng/μl, in order to use 50 ng of RNA as a template for reverse 
transcription of cDNA using an Omniscript kit (Qiagen, Cat. No. 
205113). If initial concentrations were lower than 4.2 ng/μl (less 
than optimal concentration for the Omniscript kit), then RNAs 
were reverse-transcribed using a Sensiscript kit (Qiagen, Cat. No. 
205211). Chemistries of these kits are similar except for a poly-
merase in the Sensiscript kit that is more effective under lower 
concentrations of template.

  Target Amplification 
 Primers were designed using Sequence Alignment Editor soft-

ware v. 2.0a11 (Rambaut, 2007) for housekeeping gene lactate de-
hydrogenase A  (LDHA)  (GenBank Accession No. L79951) [Man-
nen et al., 1997] and sex-differentiating genes  FGF9  (GenBank Ac-
cession No. KC844914) and  FOXL2  (GenBank Accession No. 
EU848473) ( table  1 ).  LDHA  has been identified as a common 
housekeeping reference in mammal studies [Lee et al., 2002; Ren 
et al., 2010] and exhibits an expression profile in alligators that is 
similar to β-tubulin, a housekeeping gene frequently used as a con-
trol in qPCR studies [Merchant et al., 2009]. We attempted to use 
β-tubulin as a control in our study, but available primers failed to 
amplify the gene consistently. RNAs were treated with DNA-free 
DNase (Ambion, Cat. No. AM1906) before reverse transcription 
using Qiagen’s One-Step RT-PCR kit (Qiagen, Cat. No. 210212). 
Reverse-transcribed, DNase-treated samples served as template 
for PCR to validate primers and to confirm amplification of a sin-
gle clear band as seen in comparison with the same amplification 
from genomic DNA. Target loci were amplified and quantified by 
a Stratagene MX3000p thermal cycler using an initial activation 
step at 95   °   C for 15 min, followed by 40 cycles of 94   °   C for 15 s, 
varying annealing temperatures depending on target ( table 1 ) for 
30 s and 72   °   C for 30 s. The 40 cycles were followed by one cycle of 
95   °   C for 1 min, 55   °   C for 30 s and 95   °   C for 30 s. Cross threshold 
(Ct) values were downloaded from MxPro software v. 4.10. An ef-

Table 1.  Primers and annealing temperatures used to amplify housekeeping and sex-differentiating genes in 
American alligators, Alligator mississippiensis

Locus Forward Reverse Annealing 
temperature, °C

LDHA TGTGACTGCAAACTCCAAGC GCCGCTACCAATAACACGAT 57.0
FGF9 CCCAGGAGTGTGTATTCAGAG CAGCATGTTCCATCCAAGCC 60.8
FOXL2 TACTCSTACGTGGCSCTSAT TTCTCGAACATGTCCTCGCAGG 57.0
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fort was made to maximize the assessment of expression of each 
gene by measuring expression in as many samples as possible on 
the same plate in the same qPCR run [Derveaux et al., 2010].

  Analyses 
 Dissociation curves estimated the number of different tran-

scripts amplified during one qPCR reaction, and thus, it provides 
a measure of the PCR specificity. Sample data points were discard-
ed if either the targeted housekeeping gene, the targeted sex-differ-
entiating gene or both produced more than a single product during 
qPCR as detected by the dissociation data. Ct expression data for 
sex-differentiating genes were normalized using  LDHA  Ct data. 
Sex and developmental stage differences in expression data (delta 
Ct) for sex-differentiating genes were tested using a t test for pair-
wise comparisons or one-way ANOVA for stage comparisons, as 
implemented in SPSS Statistics 17.0 software (SPSS, 2008). Sex and 
developmental stage differences in  LDHA  Ct data were also tested 
using the same t test.

  Results 

 Data points were compared between sexes, across 
 developmental stages and among juvenile tissue types. 
Relevant values and levels of significance were record - 
ed for each comparison with and without normaliza - 
tion of raw Ct values for  FGF9  and  FOXL2  with  LDHA 
Ct values to demonstrate the effect of normalization
on results ( online supplementary table 1, see www.
karger.com/doi/10.1159/000350787). Log 2 -transformed 
 FGF9  expression varied significantly across developmen-
tal stages (mean pre-TSP: 1.8 × 10 –3 ; mean post-TSP: 3.7 
× 10 –3 ; mean juvenile: 2.2 × 10 –1 ; p < 0.05) ( fig. 1 a). After 
the TSP, increased expression of  FGF9  was less variable 
in males, and significant increases were seen between 
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  Fig. 1.  Relative expression of  FGF9  in male 
and female alligators at both early and late 
stages of embryogenesis and at a juvenile 
stage.  a  Analysis of  FGF9  expression in all 
queried samples indicates significant varia-
tion across developmental stages.  b  Com-
parison of  FGF9  expression before (termed 
early) and after (termed late) the TSP of sex 
determination indicates a significant in-
crease in  FGF9  expression after sex deter-
mination among male, but not female em-
bryos. Expression increased significantly 
from late embryos to juvenile tissues in 
both males and females.  c  Comparing male 
and female tissue types from juvenile al-
ligators indicates significant variation 
among male, but not female tissues. Means 
were log 2 -transformed for ease of visual in-
terpretation. Lines on bars represent stan-
dard error. Numbers above bars indicate 
the number of biological replicates. The 
black diamond in  a  and  b  indicates the
developmental stage in which sex is de-
termined. Asterisks represent significance 
( *  p < 0.05;  *  *  *  p < 0.001). 
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post-TSP samples and juvenile tissues in both males and 
females (p < 0.001). Although mean  FGF9  expression in 
late-stage embryos was higher in females (male = 2.9 × 
10 –3 ; female = 4.4 × 10 –3 ), the variation (standard error) 
was also higher across the queried female embryos 
( fig. 1 b), rendering the pattern nonsignificant.  FGF9  ex-
pression varied significantly across juvenile tissues in 
males (p < 0.001), but not in females ( fig. 1 c).

  Overall, between-sex and interstage differences in 
log 2 -transformed expression of  FOXL2  were not signifi-
cant across early, late and juvenile stages (mean pre-TSP: 
4.8 × 10 –3 ; mean post-TSP: 7.7 × 10 –5 ; mean juvenile: 5.6 
× 10 –1 ) ( fig. 2 a), but  FOXL2  expression significantly de-
creased after the TSP (p < 0.05) and then increased in both 
male and female juveniles (p < 0.0001) ( fig. 2 b). Although 

late-stage embryonic  FOXL2  expression was, as expected, 
higher in females than in males, the difference was not 
significant.  FOXL2  expression varied significantly among 
tissues within each sex (male: p < 0.05; female: p < 0.001), 
but not between male and female juveniles ( fig. 2 c). Log 2 -
transformed  LDHA  expression varied significantly across 
developmental stages overall (mean pre-TSP: 20.0; mean 
post-TSP: 20.3; mean juvenile: 25.7; p < 0.001) and spe-
cifically for both males and females (male and female: p < 
0.001) ( fig. 3 a, b), but within stages, expression of  LDHA  
did not differ between males and females ( fig. 3 b). Sample 
sizes vary due to conservative inclusion of expression data 
only of samples, in which both amplifications of the sex-
differentiating gene and the housekeeping gene yielded 
clear dissociation curves.
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  Fig. 2.  Relative expression of  FOXL2  in 
male and female alligators at both early and 
late stages of embryogenesis and at a juve-
nile stage.  a  Analysis of  FOXL2  expression 
in all queried samples does not indicate sig-
nificant variation across developmental 
stages.  b  Comparison of  FOXL2  expression 
before (termed early) and after (termed 
late) the TSP of sex determination indicates 
a significant decrease in  FOXL2  expression 
after sex determination among both male 
and female embryos. Expression increased 
significantly from late embryos to juvenile 
tissues in both males and females.  c  Com-
paring male and female tissue types from 
juvenile alligators indicates significant 
variation among both male and female tis-
sues. Means were log 2 -transformed for ease 
of visual interpretation. Lines on bars rep-
resent standard error. Numbers above bars 
indicate the number of biological repli-
cates. The black diamond in  a  and  b  indi-
cates the developmental stage in which sex 
is determined. Asterisks represent signifi-
cance ( *  p < 0.05;  *  *  *  p < 0.001). 
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  Discussion 

 Our study revealed sex differences of  FGF9  and  FOXL2 
 expression in both embryonic and juvenile American al-
ligators.  FGF9  expression increased in a sex-specific man-
ner after the TSP and differed significantly across juvenile 
male, but not female tissue types. Our data revealed evi-
dence of juvenile  FGF9  expression in testes, but not ova-
ries.  FGF9  appeared to be acting in a sex-specific manner 
in both late-stage embryos and juveniles, suggesting a 
sustained role of  FGF9  throughout sexual development of 
male, but not female alligators. By contrast,  FOXL2  was 
expressed at higher levels before the TSP than in either 
male or female late-stage embryos. This suggested an al-
ternative function of  FOXL2 , distinct from its role spe-
cifically in ovarian development. The dataset for  FGF9  
expression in juveniles appears to be unbalanced in that 
more tissues are represented for males than for females 
( fig. 1 c). However, the absence of expression data for tis-
sues such as female liver does not represent a lack of at-
tempted amplification. Rather, these tissues were queried 
equally in males and females, but  FGF9  was not amplifi-
able from all samples. We consider absence of expression 
meaningful in this context.

  It should be noted that differences in gene expression 
between sexes and developmental stages may not neces-
sarily mean differences in function or distinct conse-
quences for phenotypic variation. Gene expression is a 
complex culmination of many molecular factors, and the 
level of gene expression differences between species or 
sexes may have a basis in neutral, stochastic events rather 

than functional differences driven by natural selection 
[Bedford and Hartl, 2009; Romero et al., 2012]. However, 
in comparative studies of gene expression, genes that ex-
hibit strong differences in average expression in particu-
lar lineages or species are considered candidates for selec-
tion-driven differences with functional consequences for 
development [Perry et al., 2012; Romero et al., 2012]. In 
this study, the expression levels of  FGF9  and  FOXL2  in 
male and female embryos might be considered to exhibit 
strong differences in average expression and hence, are 
our top candidates for expression differences that may 
have functional, selection-driven consequences for sex 
determination in alligators.

  If juvenile or non-TSP embryonic patterns of expres-
sion are similar to expression patterns within the TSP, it 
would support the hypothesis that a similar function of 
the genes, as reflected in their expression patterns, is sus-
tained over a longer developmental phase than previous-
ly thought. By contrast, expression patterns that are dis-
similar to those observed within the TSP would suggest 
potential alternative or additional functions for those 
genes during ontogeny. Identification of alternative func-
tions of sex-differentiating genes is especially relevant to 
the evolution of sex determination because it is common-
ly accepted that sex-determining and sex-differentiating 
genes have been repeatedly recruited from different func-
tions [Graves, 2001].

  Identifying other functions that are suggested by time, 
stage- or tissue-specific expression patterns may illumi-
nate pathways by which sex-related genes are recruited, 
thereby informing the evolution of transitions between 
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  Fig. 3.  The housekeeping gene  LDHA  am-
plified from each queried tissue.  a   LDHA  
amplification varies by stage, suggestive of 
ontogenetic differences in cell proliferation 
[Merchant et al., 2009].  b  Subdivided by 
sex, the dataset shows stage-differential, 
but not sex-differential expression of 
 LDHA , suggesting the utility of the marker 
as a normalizer of expression data for genes 
of interest. Means were log     2 -transformed 
for ease of visual interpretation. Lines on 
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above bars indicate the number of biologi-
cal replicates. The black diamond in  a  and 
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sex-determining mechanisms. For example, the alterna-
tive pre-TSP function(s) of  FOXL2  has (have) relevance 
to the study of transitions between mechanisms of sex 
determination. If genes are co-opted into the sex-differ-
entiating cascade as sex-determining mechanisms evolve, 
then our result may suggest a function from which  FOXL2  
was co-opted into the function of sex differentiation. As 
another example, unlike the 2 studied sex-differentiating 
genes,  LDHA  was found to be expressed in every queried 
tissue. Relative expression levels of  LDHA  varied among 
developmental stages, but not between sexes, possibly ex-
plained by stage differences in cell proliferation [Mer-
chant et al., 2009]. This pattern supports the characteriza-
tion of  LDHA  as a housekeeping gene and validates the 
use of  LDHA  as a normalizing factor with which to study 
relative expression levels of  FGF9 ,  FOXL2  and other genes 
in American alligators. Further, Merchant et al. [2009] 
reported expression levels of  LDHA  in American alligator 
similar to those of β-tubulin, a confirmed housekeeping 
gene in this species.

  Characterizing the expression of discrete markers un-
der different conditions (i.e. male or female background) 
is only one approach by which functional genetics can be 
studied. Microarrays and sequencing of total transcrip-
tomes are also increasingly popular tools for character-

izing the functional network of sex-differentiating genes 
in both TSD and GSD species. Further research is needed 
encompassing a broader investigation of male and female 
transcriptomes of American alligators before, during and 
after the TSP. This research will benefit from whole-ge-
nome sequencing of American alligators and other croco-
dilians [St John et al., 2012]. We expect future transcrip-
tomic studies to further support an early embryonic 
 function of  FOXL2  and a sustaining function of  FGF9  
throughout male development. These characterizations 
will serve as points of comparison between species and 
sex-determining mechanisms. By this approach, the evo-
lutionary pathways and frequencies of change in mecha-
nisms can be determined.
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