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Simple Summary: The role of aquaporins (AQPs) in the adaptation of amphibious fishes to terrestrial
environments was investigated using genome mining, phylogenetics, molecular evolution, and
protein structure modelling. Evidence of adaptive evolution was found in 21 AQPs belonging to
5 different classes but predominantly to the AQP11 class. These sequence changes indicate that the
modifications in molecular function and/or structure could be related to the process of adaptation to
an amphibious lifestyle.

Abstract: Aquaporins (AQPs) are a highly diverse family of transmembrane proteins involved in
osmotic regulation that played an important role in the conquest of land by tetrapods. However,
little is known about their possible implication in the acquisition of an amphibious lifestyle in
actinopterygian fishes. Herein, we investigated the molecular evolution of AQPs in 22 amphibious
actinopterygian fishes by assembling a comprehensive dataset that was used to (1) catalogue AQP
paralog members and classes; (2) determine the gene family birth and death process; (3) test for
positive selection in a phylogenetic framework; and (4) reconstruct structural protein models. We
found evidence of adaptive evolution in 21 AQPs belonging to 5 different classes. Almost half of the
tree branches and protein sites that were under positive selection were found in the AQP11 class. The
detected sequence changes indicate modifications in molecular function and/or structure, which
could be related to adaptation to an amphibious lifestyle. AQP11 orthologues appear to be the most
promising candidates to have facilitated the processes of the water-to-land transition in amphibious
fishes. Additionally, the signature of positive selection found in the AQP11b stem branch of the
Gobiidae clade suggests a possible case of exaptation in this clade.

Keywords: aquaporin; amphibious fishes; adaptive evolution; emersion

1. Introduction

Adaptation to new environments is challenging, but can also provide possibilities
of increasing species diversification [1–3]. In particular, water-to-land transitions are
among the most extreme habitat shifts in the history of life [4,5]. Compared to aquatic
animals, those living on land must confront higher gravitational pressure and desiccation
conditions. Consequently, emersion from water is a complex evolutionary process involving
numerous morphological (biomechanical) and physiological (metabolic and biochemical)
changes, which are mostly associated with locomotion, vision, audition, respiration, and

Biology 2023, 12, 846. https://doi.org/10.3390/biology12060846 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology12060846
https://doi.org/10.3390/biology12060846
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0003-0232-5370
https://orcid.org/0000-0002-8940-7717
https://orcid.org/0000-0002-3628-1137
https://orcid.org/0000-0001-6212-9502
https://orcid.org/0000-0003-2535-6217
https://orcid.org/0000-0002-2214-1125
https://doi.org/10.3390/biology12060846
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology12060846?type=check_update&version=2


Biology 2023, 12, 846 2 of 18

desiccation [1,5,6]. Tetrapods (i.e., amphibians, reptiles (including birds), and mammals)
arguably represent the most successful transition to life on land in vertebrates. Additionally,
actinopterygian fishes also account for multiple independent cases of amphibious evolution
that have occurred along their evolutionary history (reviewed in [1,7,8]). These events
provide an excellent model system for studying and comparing the tempo and mode of
complex adaptations that lead to terrestrialisation.

The so-called amphibious fishes typically inhabit intertidal areas, taking refuge in
small pools during low tides and presenting several adaptations for emersion [1,7,9].
Many amphibious fishes are air-breathers [1], as is the case with mudskippers, which can
gulp air [10], and killifishes, which use their skin as a gas exchanger [11–13]. Likewise,
higher ammonia tolerance and the ability to actively excrete this compound appear to be
widespread adaptations in amphibious fishes (e.g., [14–17]). There are also outstanding
examples of terrestrial locomotion in otherwise amphibious lineages, such as those of
the climbing perch (Anabas testudineus) and the walking catfish (Clarias batrachus) [18,19].
However, little is known about the molecular and physiological mechanisms underpinning
water recovery, maintenance, and homeostasis during emersion.

Aquaporins or AQPs (earlier known as membrane intrinsic proteins (MIPs)) are
transmembrane channels that carry water and small, uncharged solutes [20–22]. Their
molecular structure is highly conserved and comprises six α-helices connected with five
loops. These proteins tetramerise and form five pores in cell membranes (one in each
monomer plus the central one) [23,24]. Two opposite NPA (Asn–Pro–Ala) motifs form the
pore and bond with the water molecule, as well as determining which solutes can pass
across the pore [25]. The aromatic arginine (ar/R) selectivity motifs filter solutes, and the
differentially conserved amino acids in aquaglyceroporins (P1–P5) have been described so
far as the most important motifs involved in solute selectivity [26–28]. Most of these amino
acid residues map onto the external half of the aquaporin molecule, suggesting that this
region is mainly involved in solute specificity. In contrast, most of the regulatory processes
of the molecule occur on the cytoplasmic half of the protein (reviewed in [29]).

Besides water, AQPs can transport a plethora of compounds such as glycerol, urea,
ammonia, CO2, reactive oxygen species (ROS), and hydrogen peroxide [30,31], suggesting a
broad relevance in different physiological mechanisms. Up to 17 different vertebrate aqua-
porin subfamilies or classes have been described, which can be clustered into 4 main groups:
(1) the aquaglyceroporins or GLPs; (2) the water-selective classical AQPs; (3) the unortho-
dox AQPs or superaquaporins; and (4) the AQP8-type or aqua-ammoniaporins [26,32,33].
AQPs are particularly abundant in the main organs for water recovery in fishes, including
gills, intestines, and kidneys, and they have been broadly associated with osmoregulatory
processes in fishes and with fish acclimation to different salinities (reviewed in [34]). In
tetrapods, which acquired a terrestrial lifestyle arising from sarcopterygian fish ancestors,
several AQPs have been involved directly in the mechanistic basis of water conserva-
tion (reviewed in [33]). Hence, it can be postulated that some AQPs could have been
recruited to be involved in the physiological adaptation needed during the emersion of
actinopterygian amphibious fishes as well. For instance, Ip et al. [35] postulated that the
upregulation of an aquaporin in gills and skin of the climbing perch could be related to
higher ammonia excretion.

Herein, the molecular evolution of AQPs in 22 teleost fish genomes was investigated
in the context of water-to-land adaptations. This study extends our earlier work on the
role of AQPs in the amphibious behaviour of mudskippers [36] and takes advantage of
the recent availability of genomic data on additional amphibious fishes, thus providing
a more comprehensive dataset and permitting more detailed and accurate comparative
analyses. A robust phylogeny of AQPs was reconstructed based on the expanded dataset
and was used as an evolutionary framework to catalogue AQPs into classes and paralogs,
as well as to investigate molecular and adaptive evolution at the nucleotide sequence level.
Our results uncovered numerous instances of adaptive evolution in different AQPs across
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the studied amphibious fish lineages, suggesting a crucial role of this protein family in the
conquest of land.

2. Materials and Methods
2.1. Genome Mining and Phylogenetic Reconstruction

We built on our previous dataset [36], adding data from 18 new genomes of actinoptery-
gian fish species that either exhibit a truly amphibious lifestyle or have undergone a degree
of amphibiousness (reviewed in [1,7,8]). Comparable data were included from the genomes
of 33 additional actinopterygian fishes (Table S1). Since sarcopterygians are the sister group
of actinopterygians, we employed the genomes of six tetrapods, along with the genome of
the coelacanth, as well as four PCR-generated gene sequences of lungfishes (of the AQP0
and AQP2-like classes) as outgroups. Genome and isolate AQP sequence retrievals were
performed following the protocol detailed in [37] from GenBank as of June 2021. In short,
sequence similarity searches [38] using the BLASTX tool v2.2.28 were run locally to retrieve
all sequence fragments that could be identified as AQPs with an E-value threshold of
1 × 10−10. When available, the BLASTP tool was run on protein files too, as double-check.
Initial alignments at the nucleotide level were conducted using the L-INS-I algorithm in
MAFFT v7.505 [39] to verify exon–intron boundaries [37]. Finally, gene sequences were
translated into amino acids using Geneious Pro v9.1.8 [40], and a combined dataset was
assembled and aligned as indicated above for subsequent phylogenetic analysis. All protein
sequences used in the subsequent analyses were either of the entire gene or, if partial, of a
minimum of 70 amino acids in length.

The best-fit site-homogeneous model of amino acid replacement (JTT [41] + Γ [42] +
I [43]) was determined using the Bayesian information criterion (BIC) in ProtTest v3.4. [44].
The final AQP dataset was then subjected to maximum likelihood analysis (1) using
IQ-TREE with 1000 ultrafast bootstrapping (UFBoot) and SH-aLRT pseudo-replicates
each [45–47] and (2) with 1000 fast bootstrap replicates using the rapid hill-climbing al-
gorithm of RAxML v8.2.10 [48]. The RAxML analysis was run on the CIPRES Science
Gateway [49]. Phylogenetic tree figures were generated using iTOL v5 [50].

2.2. Estimation of Gene Family Evolutionary Histories

A reference species tree phylogeny was obtained from Timetree.org [51] and used
to analyse gene family evolution. This reference tree was validated using the bony fish
phylogeny established by Hughes et al. [52]. A few minor discrepancies only affected
low-supported branches. The expansion and contraction of the AQP gene family across
species were examined with the Bayesian Estimation of Gene Family Evolution (BEGFE)
software [53] using default parameters and a single birth–death rate parameter (lambda,
λ). With this method, we estimated the probability of gene family numbers expanding,
contracting, or remaining constant on each node of the species tree. A total of 2 independent
Markov chain Monte Carlo runs were conducted for 10 million steps, with sampling per-
formed every 1000 steps. Finally, we assessed the convergence of the posterior distributions
of the estimated parameters in Tracer [54].

2.3. Analyses of Adaptive Evolution

Individual CDS alignments for each of the AQP subfamilies present in our dataset were
created and aligned using TranslatorX v1 [55] with the same MAFFT algorithm as above.
Twelve subsets were created following the AQP classes recovered in Figures 1, 2 and S1.
This step was performed to maximise the number of phylogenetic informative positions and
to reduce the number of gaps, which is key for the positive selection test that was employed.
Highly partial gene sequences were removed, as well as alignment columns containing 5%
or more gaps using Geneious Pro v9.1.8 [40]. Additionally, gene sequences were inspected
manually, and highly variable regions due to poor alignment or low-quality sequences
were removed. We derived the phylogenetic trees of these datasets using RAxML with the
GTR [56] + Γ model of nucleotide substitution and the same settings as described above,



Biology 2023, 12, 846 4 of 18

and branch lengths were corrected as substitutions per codon. We decided to conduct
phylogenetic analyses for each AQP subfamily in order to test whether these paralogs were
able to reconstruct the reference species tree (i.e., their phylogenetic signal) or how much
each departed from it. In a few cases, we manually modified poorly supported branches
that likely resulted from stochastic error to standardise the topologies to the reference
species tree and the bony fish classification of Hughes et al. [52].

Trees and alignments were analysed with the CODEML module of PAML v4.4 [57].
Tests of adaptive evolution were performed using the branch-site test 2 (null model A (MA)
vs. model A) [58], which is currently among the most powerful approaches (see its strengths
and caveats discussed in a very recent article by its own developer [59]). We calculated
likelihood-ratio tests (LRTs) with null MA as the null hypothesis and MA as an alternative
hypothesis and computed p-values using a mixed χ2 distribution, which was obtained by
dividing by two the value of the χ2 distribution with one degree of freedom [57,60]. Due to
the several tests conducted on the same tree topology, we calculated q-values (corrected
p-values) for a False Discovery Rate (FDR) using the qvalue package of R [61]. For those
tests wherein the LRT was significant, we calculated the posterior probabilities for site
classes using the Bayes Empirical Bayes (BEB) [62] implemented in PAML, identifying
the specific sites under selection on each branch. We tested for possible recombination
events using GARD [63], as implemented in Datamonkey [64]. The results are shown in
the Supplementary Materials.

2.4. AQP 3D Structure Modelling

Protein 3D structures were predicted using multiple sequence alignments (MSAs)
generated through an Mmseqs2 application interface as implemented in ColabFold [65],
which uses the recently released AlphaFold2 source code [66]. Gene sequences were en-
tered into the ColabFold notebook (https://colab.research.google.com/github/sokrypton/
ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb, accessed on 18 April 2023)
with the following advanced features: msa_method = MMSeq2, num_models = 5, and
num_relax = Top1. The quality of the best model was assessed using the mean local dis-
tance difference test (pLDDT). A pLDDT score of ≥60 was considered a reasonable model,
and scores of > 80 indicated a very accurate model.

The 3D structures of human AQP10 (6F7H) and AQP1 (1H6I) were retrieved from
the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB-PDB).
Positively selected sites were superimposed onto these crystallographic 3D structures.

UCSF Chimera 1.15 was used to view and manipulate the molecular graphics (PDB
files) for the modelled structures [67]. The effects of missense variants in protein structures
were predicted using Missense3D [68].

3. Results and Discussion
3.1. Diversity of Amphibious Fish Aquaporins

Our genomic screening yielded the comprehensive protein alignment of 1006 gene
sequences and 441 amino acid positions. This dataset was subjected to maximum likeli-
hood analyses with IQ-TREE (−ln L = 172,474.585) and RAxML (−ln L = 172,803.455), both
yielding highly similar topologies with slight differences that were mainly concentrated
on low-supported branches (Figures 1 and S1). The reconstructed trees recovered 16 AQP
classes grouped into 4 main groups with strong statistical support: (1) the aquaglycero-
porins (AQP3, 7, 9, and 10); (2) the water-selective classical AQPs (AQP0, 1, 2, 4, 5, 6, 14, and
15); (3) the unorthodox AQPs or superaquaporins (AQP11 and 12); and (4) the AQP8-type
or aqua-ammoniaporins (AQP8 and 16; Figures 1 and S1) [26,32,33]. Note that AQP13,
a type of aquaglyceroporin that was originally described in platypus and Western clawed
frog [33,69] (neither of which were included in the present work) was not found in any of
the analysed genomes.

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb
https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_advanced.ipynb
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acid positions. The tree was rooted using the split between aquaglyceroporins and the rest of the
AQPs. The main four groups of AQPs are indicated with colour panels (blue for aquaglyceroporins,
orange for superaquaporins, green for aqua-ammoniaporins, and yellow for water-selective classical
AQPs). AQP paralog classes are named (AQP0–15), and paralog groupings within each class are
denoted with letters (a, b, a1, and a2, following [33,69]) on the corresponding branches. Branches of
amphibious fishes are highlighted in red. The names of the branches (species plus paralog) under
adaptive selection are shown near their terminal locations on the tree. A detailed, fully labelled
phylogram is available in Supplementary Figure S1.
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Phylogenetic relationships among AQP classes were generally unresolved due to
low branch support (Figure S1). Based on the reconstructed phylogenetic patterns, many
of the AQP paralogs were likely generated through two rounds of whole genome du-
plication (WGD) that occurred early in the evolution of vertebrates (dubbed R1 and R2,
respectively) [33,69]. In addition, a more recent WGD event (R3) occurred on the stem
branch of teleost fishes, providing them with a broader repertoire of AQP genes [70,71].
Furthermore, a fourth WGD event (R4) occurred in the common ancestor of salmonids and
some cyprinids [72,73], thus acquiring even more copies of AQP genes, some of which were
retained [74]. Conversely, the diversity of AQPs within actinopterygian fishes could also be
explained by alternative events such as tandem or inter-chromosomal duplications. For
instance, according to Finn et al. [75] a tandem duplication event on the branch that leads
to all actinopterygian fishes AQP10, also yielded two copies in the non-teleost Reedfish
(Erpetoichthys calabaricus) and Gray bichir (Polypterus senegalus).

Focusing on amphibious fishes, a total of 356 putative AQP genes were recovered
(Figure 2), including 9 additional mudskipper AQPs that were not mined in our previous
study [36]. These AQPs could be classified into 13 different classes (AQP2, 5, and 6 are
exclusive of tetrapods). For most amphibious fish species, one paralog per class was
found, no gene family expansions were detected, and only some putative cases of gene
loss could be identified. This result should be interpreted with caution though, as the level
of completeness, assembly, and annotation of genomes available in public databases is
fairly uneven, and their quality is sometimes low, thus hampering proper gene isolation. In
particular, few AQP15 orthologs were identified and several species appeared to lack this
paralog (Figures 1, 2 and S1). Finn et al. [33] reported that AQP15 orthologs were present
prior to the emergence of all jawed vertebrates (Gnathostomata), but this was subsequently
lost in many species, which was associated with a genome reduction event [76]. However,
the potential physiological impact of this gene loss is not well understood. On the one
hand, several studies have revealed examples of overlapping/redundant functions among
different aquaporin classes (reviewed in [31]). Additionally, the patterns of expression of
these genes are highly diverse, and even under similar physiological conditions, differences
among species and organs can be found (see [34]).
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retrieved from a previous study [36]. Half-grey circles denote partial gene sequences, i.e., gene
sequences in which identification of the entire ORF was not possible. Blue circles correspond to
the aquaglyceroporin group, orange circles represent superaquaporins, green circles indicate aqua-
ammoniaporins, and yellow circles represent water-selective classical aquaporins. AQP1b1 and
b2 paralog classifications are unclear. The existence of Anguilla anguilla AQP16 is unclear. The
duplication of these classes (dubbed ‘a’ and ‘b’) mainly occurred on the branch of teleosts; therefore,
Erpetoichthys calabaricus and Polypterus senegalus only possess one copy of each paralog, except for
E. calabaricus AQP10 and P. senegalus AQP8 and 10.

To estimate the rates of AQP gene duplication and loss across vertebrates, we con-
ducted a Bayesian analysis that estimated the birth–death rate, which was measured with a
parameter called lambda. We assumed a model in which the lambda parameter is fixed
across branches and obtained a value of 1.61 × 10−3. This value suggests a lower turnover
within the AQP family compared to more variable families, such as the major histocompati-
bility complex (MHC) [77]. Furthermore, this test also allowed us to estimate the probability
of expansion, contraction, or conservation of the AQP gene number in each group. For
example, the branch leading to the Atlantic salmon (Salmo salar) was suggested to have
undergone an expansion (Figure S2), a result that agrees with the R4 WGD event in this
lineage [73].

Regarding the studied amphibious fishes, the northern snakehead (Channa argus)
and the walking goby (Scartelaos histophorus) may have undergone a contraction of AQP
genes. However, in the case of S. histophorus, the results could perhaps be related more to a
poorly assembled genome (with lower-quality source data) than to a genuine contraction
of AQP genes. In a similar way, our results suggest that the rock-pool blenny (Parablennius
parvicornis) experienced a contraction of AQP genes, but again, the quality of this genome
assembly was low and included several partial gene sequences (Figure 2). This low-
quality assembly could have also misled the result found for the branch leading to the
jewelled blenny (Salarias fasciatus), as the number of genes for P. parvicornis was very low.
Surprisingly, our results suggest an expansion of the AQP repertoire in the European eel
(Anguilla anguilla) (Figure S2). This could not only be due to the retention of several AQP
paralogs, such as AQP4b or AQP15, but also the presence of a putative AQP16 (Figure 2).
Finally, the Philippine catfish (Clarias batrachus) AQP repertoire seems to have remained
unchanged with respect to the ancestor.

Altogether, these results indicate a complex evolutionary pattern that extends beyond
birth and death gene family processes and cannot be fully understood using presence–
absence approaches alone. However, the absence of exclusive copies in the studied am-
phibious fishes suggests that if AQPs played a role in achieving an amphibious lifestyle in
any of these species, this could be related to selective changes in gene sequences that are
present in their fully aquatic sister groups as well [78].

3.2. Adaptive Evolution in Amphibious Fish AQPs

The footprints of positive selection can be detected in gene sequences by estimating
the ratio between non-synonymous and synonymous nucleotide substitutions (dN/dS),
usually known as the selection coefficient or omega (ω) [79]. Apart from our earlier study
on mudskippers [36], two other recent studies have related positive selection in AQPs to
water habitat change in vertebrates: one in squamates during their adaptation to life in
dry habitats [80,81], and the other focused on the cetacean land-to-water transition [80,81].
Similarly, branch-site tests were conducted to search for positions under positive selection
in each paralog in those branches of the reconstructed tree that led to amphibious fish
species and thus could be related to adaptation for the water-to-land transition.

A total of 21 branches of amphibious fishes, which expand across 7 different orders
of Actinopterygii, showed footprints of adaptive selection in AQPs (Table 1 and Figure 1).
Of these 21 branches that may have undergone adaptive evolution, 8 of them clustered
within the superaquaporin group (AQP11 and 12) (Table 1 and Figure 1) [26,33]. Orthologs
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of both of these classes have been shown to be upregulated in seawater in one marine
medaka [82] but downregulated in the roughskin sculpin [83], indicating a potential role in
osmoregulation. Moreover, AQP11 has been found to transport hydrogen peroxide (H2O2)
and is associated with cellular stress reduction in the endoplasmic reticulum [30,84,85]. This
compound can also be transported by the AQP3, AQP8, and AQP9 proteins, suggesting
that the role of AQPs in the ROS pathway could be more important than previously
thought [86–88]. However, it remains unknown how these proteins cope with the increase
in ROS and oxidative stress during the adaptation of fishes to land and air-breathing
conditions, as well as their specific functions and expression patterns.

Table 1. Results of the branch-site tests that were significant (q-value of the LRT < 0.05). All other
tests were not significant.

AQP Foreground Branch LRT p-Value a q-Value b ω c Prop. 2a d Prop. 2b e Selec. Sites

1a A. anableps 7.711 0.003 0.0298 999 0.006 0.001 0
1b1 C. batrachus * 21.708 1.59 × 10−6 1.126 × 10−4 136.799 0.071 0.007 1
3b C. argus 16.551 2.367 × 10−5 2.603 × 10−4 31.599 0.032 0.008 2
3b C. batrachus 19.478 5.087 × 10−6 1.119 × 10−4 49.655 0.037 0.009 3
3b C. variegatus 9.906 8.233 × 10−4 0.006 67.061 0.013 0.003 1
7 Mudskipper clade stem 8.639 0.002 0.026 999 0.015 0.004 0

8a1 M. albus 12.334 2.217 × 10−4 0.007 12.806 0.068 0.013 6
8a1 Mudskipper clade stem 7.295 0.003 0.027 36.256 0.019 0.004 0
8a1 P. parvicornis 7.997 0.002 0.028 23.468 0.085 0.017 3
8b1 B. splendens 7.460 0.003 0.028 8.669 0.039 0.008 0
10b F. heteroclitus * 47.896 2.247 × 10−12 8.76 × 10−11 67.772 0.005 0.001 1
10b S. pavo 13.001 1.557 × 10−4 0.003 59.219 0.019 0.003 1
11b Betta 15.126 5.029 × 10−5 8.298 × 10−4 43.954 0.030 0.007 3
11b Kryptolebias 6.510 0.005 0.029 38.602 0.022 0.005 2
11b Monopterus 13.291 1.334 × 10−4 0.001 18.128 0.038 0.009 3
11b Mudskipper clade stem 9.607 9.690 × 10−4 0.006 999 0.029 0.006 0
11a S. fasciatus 12.613 1.916 × 10−4 0.002 16.503 0.047 0.011 2
12 E. calabaricus 10.325 6.560 × 10−4 0.004 708.322 0.021 0.005 1
12 M. armatus 10.907 4.790 × 10−4 0.004 998.999 0.014 0.003 1
12 P. senegalus 11.961 2.717 × 10−4 0.004 999 0.016 0.004 0
15 A. anableps 9.594 9.761 × 10−4 0.008 1 0.057 0.017 0

11b Gobiidae stem branch ** 17.813 1.218 × 10−5 4.021 × 10−4 41.228 0.110 0.025 7

a Uncorrected p-value of the LRT. b Multiple-test correction of the LRT p-value (false discovery rate). c Omega
(dN/dS) ratio of the foreground branch(es). d Proportion of sites that are under positive selection (ω 2a > 1) on the
foreground branch(es) and under negative selection (ω < 1) on the background branches. e Proportion of sites
that are under positive selection (ω 2a > 1) on the foreground branch(es) and under neutral selection (ω = 1) on
the background branches. * Non-reliable results (see Section 3). ** Not a fully amphibious clade.

Adaptive evolution was detected on four branches within the aqua-ammoniaporins,
three of them corresponding to the same paralog, AQP8a1 (Table 1 and Figure 1). These
proteins are the main AQPs that are able to transport ammonia; therefore, they have been
strongly associated with excretion and detoxification [89]. Our results suggest that adaptive
evolution could have occurred on the branch leading to the mudskippers clade, the swamp
eel (Monopterus albus), the Siamese fighting fish (Betta splendens), and P. parvicornis. Among
the mudskippers, there are some species that are capable of excreting ammonia through
gills during emersion [15,90]. There is also evidence of ammonia detoxification to glutamine
during emersion in M. albus [14,91,92]. However, there is still no evidence of ammonia
excretion in terrestrial conditions in either B. splendens or P. parvicornis. Ammonia transport
is not restricted to this AQP, and there is evidence of ammonia transport in the AQP1,
6, and 9 orthologs (reviewed by [31]). One study suggested a role of an AQP1 ortholog
in ammonia excretion in A. testudineus during emersion [35]. Nevertheless, even though
our dataset included sequence data for AQP1, we did not find any signature of adaptive
evolution in this gene.

Up to six branches were found to have undergone positive selection within the large
clade of GLPs, with three of them clustering within the AQP3 class. There is evidence of the
downregulation of an AQP3 ortholog in F. heteroclitus embryos during aerial exposure, likely
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to reduce water loss [93]. However, as in A. testudineus, no signal of adaptive evolution was
found in the F. heteroclitus AQP3 branches. Therefore, the relationship between our results
and the evolution of an amphibious lifestyle in these fishes remains unclear.

We identified adaptive evolution in the AQP10b of S. fasciatus (Table 1 and Figure 1),
which, like P. parvicornis, belongs to the Blennidae family known for its notable amphibious
behaviour [7,94]. For example, the Kirk’s blenny (Alticus kirki), another member of this
group, exhibits a pattern of higher urea excretion during both emersion and immersion [95],
whereas the shanny (Blennius pholis) can volatilise ammonia through its skin [96]. Notably,
although instances of adaptive evolution in the aquaporin of these blennies are scarce, both
occurred in AQPs involved in urea (AQP10 [89,97]) and ammonia (AQP8) transport.

Finally, only three branches in the water-selective classical AQPs clade (Figure 1) were
found to have potentially undergone adaptive evolution, with two of them likely being
unreliable, as indicated below, and the remaining one not showing any signal of adaptive
evolution. Despite initially being considered as merely water channels, it is now known that
classical AQPs can transport a wide variety of solutes (reviewed in [31]). It is worth noting
that tetrapods, which successfully transitioned to an amphibious and later fully terrestrial
lifestyle, rely on the emergence of three novel paralogs (AQP2, 5, and 6 [33]) that belong to
the clade of classical AQPs. In this study, we initially hypothesised a possible convergence
hallmark within the AQP family between tetrapods and actinopterygian amphibious fishes.
However, this was not the case according to our results. These results suggest that if AQPs
contributed to the evolution of amphibious lifestyles in actinopterygian fishes, this may
have occurred through molecular changes at the sequence level that are very dissimilar to
those relevant to the water-to-land transition of tetrapods.

Despite having signatures of adaptive selection in 21 branches of amphibious fishes,
specific positions under positive selection could only be identified in 12 out of the 21 branches
(Figure 3). This discrepancy could indicate that in some branches, the signal of adaptive
evolution was cumulative and not strong enough at any particular site. Moreover, the
branch-site test is generally considered conservative and sometimes may lack enough
statistical power [59,62] (see also [98,99]). Another potential caveat may be the presence of
highly variable regions in some AQPs (which could reflect fast evolutionary rates or poor
sequence quality), as the employed tests heavily rely on robust alignments [58]. Therefore,
positive selection analysis should be interpreted with caution, especially considering the
uneven (sometimes low) quality of genome assemblies available in public databases. In
this regard, the results obtained from the AQP10b branch of the mummichog (Fundulus
heteroclitus) and the AQP1b1 of C. bactrachus (Table 1 and Figure 1) may be questionable,
because positively selected sites were found in highly variable regions, possibly due
to low-quality gene sequences. To avoid misleading results, we discarded both results
from further analysis. Finally, a seemingly contradictory result was found on the branch
leading to largescale four-eyes (Anableps anableps) for AQP15 (Table 1). The branch-site
test suggested a statistically significant event of adaptive selection, but the associated
ω-value indicated neutral evolution (ω = 1). This incongruence may be directly related
to the small number of AQP15 orthologs in the analysed dataset, as branch-site tests
might not perform well in such cases [58]. Additionally, the branch-site test can also be
affected by recombination events, especially when they occur at a high frequency, such as
in viruses [100]. When recombination occurs, phylogenetic inference can be misled, and the
dN/dS ratio can be inflated, providing false positives. In order to deal with this problem,
we examined recombination for each of the individual (subfamily-level) alignments that
were used for the positive selection analyses using GARD [63]. We only found evidence
of possible recombination in the AQP12 and AQP15 datasets (Table S2), thus suggesting
that such results should be interpreted with slightly more caution. As discussed below,
the AQP15 dataset is too small to be considered reliable for positive selection analyses.
On the other hand, the results depicted in Table 1 show that someω-values are very high
(equal or similar to 999). These values suggest a very small or even null dS value but can
be interpreted as artefactual estimates. All these very high values were indeed found on



Biology 2023, 12, 846 10 of 18

the branches reported as possibly unreliable (see above) or in those where no specific sites
were highlighted as positively selected (Table 1). Thus, such results should be interpreted
with caution.
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Figure 3. Sequence alignment and structural annotation of positively selected AQPs. Only those
amphibious fish AQPs with sites under positive selection are shown. Colour highlights denote sites
under positive selection as follows: blue for AQP3, green for AQP8, yellow for AQP10, orange for
AQP11, and red for AQP12. Gene sequences of the corresponding paralogs of Danio rerio are included
as references. The transmembrane helix (TM1-6; blue), the hemi-helices (HH1-HH2; orange), and
loops A–E (grey) are annotated for D. rerio Aqp10b based on a molecular sequence wrap of the
crystallographically resolved structure. NPA motifs (purple), ar/R selectivity filters (grey), and sites
reported to confer glycerol selectivity (P1–P5) (blue) are highlighted following [26].

3.3. Adaptive Evolution in Gobioidei AQP11b

The branch-site test detected signatures of adaptive evolution in mudskipper AQP11b,
AQP8a1, and AQP7 but could not assign them to any particular amino acid (Table 1 and
Figure 3). In contrast, our previous study [36] identified several positively selected sites
in mudskipper AQP10a and AQP11b. The main differences between both studies are
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the increased taxon sampling herein and a more thorough genome mining pipeline [37],
which helped us find orthologs and paralogs that were previously overlooked (Figure 2).
Regardless, AQP11b emerged in both studies as a promising candidate gene undergoing
adaptive evolution. In the previous study [36], one site under selection was particularly
interesting because it was located in the HH1 NPA motif of AQP11b, which was substituted
with an SFI (Ser-Phe-Ile) motif. The two opposite NPA motifs form the pore of the AQP
and bind with the water molecule, as well as determining which solutes can pass across the
pore [25]. Herein, adaptive evolution in the same NPA motif of AQP11b was detected, but
on the Gobiidae stem branch (Table 1 and Figure 3). This suggests that the modification of
the NPA motif predated the origin of the mudskipper clade, likely being an apomorphy of
the entire Gobiidae or even Gobioidei. Since not all Gobioidei have an amphibious lifestyle,
it is still unclear whether the modification of the NPA motif could be associated with a
potential advantage in favouring water recovery during emersion in mudskippers. If this
were the case, it might represent a case of exaptation [101].

Recently, the genome sequences of additional Gobioidei have been published (plus one
new Apogonoidei, Siphamia tubifer), but they could not be included in our analytical batches
because they were released after we completed our primary data acquisition. These new
gobioid genomes correspond to three additional representatives of Gobiidae (Mugilogobius
chulae, Proterorhinus semilunaris, and Rhinogobius similis), one Butidae (Bostrychus sinensis),
and two Odontobutidae (Neodontobutis hainanensis and Perccottus glenii). We searched and
extracted the AQP11b gene sequence from each of these new genomic data (as detailed
above) and aligned them with those included in our analyses in order to specifically
compare the HH1 NPA motif region. The serine found to be under adaptive selection
(compared with asparagine in Apogonoidei) is present in all Gobioid taxa (Figure S3),
confirming that this change in the NPA motif is, in fact, apomorphic to the entire Gobioidei.

Given that several early-branching gobioid lineages (Odontobutidae and Rhyacichthyi-
dae, Milyeringidae, Eleotridae, and Butidae) are mainly freshwater (or brackish) compared
with nearly fully marine Apogonidae, Kurtidae, and Trichonotidae (closer relatives of
Gobioidei), it can be postulated that gobioid ancestors likely underwent a transition from
marine to freshwater environments [102,103]. In this context, the adaptive change detected
in the AQP11b of gobioids could indeed be related to their marine-to-freshwater transi-
tion (which involves major osmoregulatory adjustments). Phylogenetically more derived,
the mudskipper stem branch of AQP11b also shows an independent signal of adaptive
selection (Table 1), as did some specific branches of AQP11b within the mudskipper clade
itself in our earlier study [36]. This might suggest that the NPA motif change possibly
related to freshwater adaptation in Gobioidei ancestors could have been later exapted in
mudskippers during their transition to terrestrial environments. Interestingly, a similar
pattern of facilitation of terrestrial adaptation through freshwater/brackish intermediate
steps has been recently reported for invertebrate AQPs as well [78].

3.4. Mapping of Positively Selected Sites onto the 3D Structure

Given the importance of NPA motifs (see above), conformational changes in or around
them could influence solute selectivity by altering the pore structure. We found evidence
of positive selection in an amino acid adjacent to the first NPA motif as well as an amino
acid adjacent to the first ar/R filter on the AQP11b branch of B. splendens (Figures 3
and 4). Additionally, from the aforementioned result on the Gobiidae stem clade, these
two positions are closer to some of the most important AQP motifs. Two other positively
selected sites were located on the external half of the molecule (S. fasciatus AQP10b and
11a; Figure S7) along with the NPA and the ar/R filters, suggesting a possible role in solute
recognition as well.
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AQP11b gene. Superimposition of the AlphaFold2 model (blue) with human AQP1 (PDB ID: 1H6I)
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Our results show that most amino acids that experienced positive selection are located
in transmembrane regions, which are typically better conserved than the connecting loop
regions (Figures 3 and S7). Only six positions were found on the N- and C-terminal regions.
There is evidence of amino acids in these regions that are related to AQP regulation,
including gating and trafficking (reviewed in [104]). However, the mechanism is not well
characterised and can vary among AQP paralogs. We did find a few positions on some
AQP3 and AQP12 orthologs that are located on the C-terminal part of the protein that
could be related to changes in regulation. However, these results should be interpreted
with caution because these regions are much more variable than the rest of the protein.
Additionally, in the case of AQP12, there is some evidence of possible recombination, and
this could have influenced the result (see above). Finally, there are three amino acids that
are shared between more than one lineage. One position, close to the fourth amino acid
site that is reported to confer glycerol selectivity in aquaglyceroporins, is shared between
gobies, the mangrove rivulus (Kryptolebias marmoratus), and B. splendens in the AQP11b
ortholog (Figures 3 and 4). Similarly, M. albus and P. parvicornis share a position in an AQP8
ortholog. Moreover, gobies and M. albus share amino acids at the same position between an
AQP11 and an AQP3 ortholog. Our knowledge of the scope of these results is still limited;
however, their signals are noteworthy and may constitute a case of convergent evolution.

Altogether, these results suggest that point mutations under positive selection could
have modified AQP function and regulation as well as solute permeability during the
evolutionary history of actinopterygian fishes and could perhaps have facilitated the
convergent transition to an amphibious lifestyle. However, how these substitutions may
have modified the molecular structures of these proteins and thus, their functions, especially
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the one detected in the first NPA motif of the Gobiidae clade, needs further research and a
better understanding of the 3D structure of every AQP class.

To test the impact of the modification of the NPA on the AQP11b stem branch of the
Gobiidae clade, we employed AlphaFold2 [66] to model the AQP11b of Periophthalmus
magnuspinnatus and Neogobious melanostomus as representatives of the Gobiidae family,
using the zebrafish (Danio rerio) AQP11a as a model organism and the orbiculate cardinalfish
(Spaheramia orbicularis) AQP11b as the closest sister species with a canonical NPA motif.
Our results show a high-quality reconstruction for all the modelled proteins (pLDDT > 80),
with the exception of some inaccurately modelled tails (Figures S4 and S5). However, upon
mapping these structures with human AQP1 (Homo sapiens), we observed seven alpha
helices instead of the canonical six. To determine if this additional helix was unique to
AQP11 orthologs, we also modelled an AQP1 ortholog of D. rerio and the human AQP1
ortholog from the RefSeq database at the NCBI [105]. Our results show that the AQP1
ortholog of D. rerio folds similarly to the human AQP1 and only six alpha helices are
present (Figure S4). Therefore, this suggests that maybe AQP11 orthologs could fold
another alpha helix. However, further crystallographic studies are needed to accurately
determine the protein structures of AQP11 orthologs and their implications in functions.
Nevertheless, this does not invalidate the accuracy of the modelling in the highly conserved
regions of the AQP molecule (Figure S5). Notably, the region where the modified NPA (SFI)
motif of Gobiidae is located exhibited the largest differences among the modelled proteins
(Figure S6). Missense·3D [68] was used to calculate the impact of the substitution of an
asparagine (N) for a serine (S) on the structure of D. rerio and S. orbicularis AQP11. The
program predicted that this mutation alters the cavity and leads to the contraction of the
cavity volume in both proteins, a reduction in 123.552 Å3 and 104.112 Å3, respectively. This
result suggests a possible modification of the pore that could result in a modification of its
function, although functional analyses are needed to characterise these mutations.

Few studies have focused on how AQPs function during emersion in actinopterygian
fishes. In this study, we have shown that several cases of adaptive evolution have occurred
in these gene sequences during the evolution of amphibious fishes. We have focused on
the molecular evolution of AQPs regarding coding regions and testing adaptive selection
that can be related to the emersion of these fishes. However, some amphibious fish species
did not exhibit any signal of positive selection (Tables 1 and S1), and this may be related
to the different degrees of amphibiousness considered. For example, we did not find any
branch under selection in either the mosquitofish (Gambusia affinis), a species that can
be considered fully aquatic although it can leave water for predator avoidance for a few
minutes, or in fishes that are able to persist for hours out of water, such as the European eel
(A. Anguilla) [1]. This suggests a more complex evolution regarding AQPs and the different
instances of amphibious behaviour, all of which need further research. Moreover, several
other aspects such as patterns of expression or aquaporin regulation were out of the scope
of this study, but they could certainly be equally if not more relevant than protein evolution
to the water-to-land transitions of these amphibious fishes [106].

4. Conclusions

The multiple instances of positive selection that may have modified the molecular
functions and/or structures of the AQPs in amphibious fishes suggest the possible role
of these proteins in adaptation during water-to-land transitions. In particular, AQP11 or-
thologs are the most promising candidates for further investigation within the amphibious
fish framework because almost half of the reported tree branches and amino acid positions
under positive selection correspond to gene sequences of this AQP class. The positively
selected sites in the HH1 NPA motif of AQP11b in gobioids could represent a case of exap-
tation. Herein, a robust phylogenetic framework was reconstructed to provide thorough
bioinformatic cataloguing of AQP paralogs and to detect instances of adaptive evolution.
Further confirmation of this hypothesis and the role of detected sequence changes under
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selection in the adaptation to terrestrial conditions in these amphibious fishes requires
integrating our findings with physiological, biochemical, and even ecological insights.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology12060846/s1: Figure S1: Phylogram of vertebrate AQPs;
Figure S2: Evolution of the AQP gene family; Figure S3: Sequence alignment of the AQP11b HH1
NPA of Gobioidei; Figure S4: Three-dimensional structural model reconstructions of some relevant
AQP genes; Figure S5: Quality of the structures in Figure S4; Figure S6: Superimposition of the
AlphaFold2 modelled AQPs from Figure S4; Figure S7: Structural view of positively selected positions
of the studied amphibious fish AQPs; Table S1: List of vertebrate AQPs; Table S2: Results of the
recombination analyses; Captions of Supplementary Figures; Sequence alignments and phylogenetic
trees used for PAML analyses; Log files from the recombination analyses.
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