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Variability among sex chromosome pairs in amniotes denotes a dynamic history. Since amniotes diverged from a common
ancestor, their sex chromosome pairs and, more broadly, sex-determining mechanisms have changed reversibly and frequently.
These changes have been studied and characterized through the use of many tools and experimental approaches but perhaps
most effectively through applications for bacterial artificial chromosome (BAC) libraries. Individual BAC clones carry 100–200 kb
of sequence from one individual of a target species that can be isolated by screening, mapped onto karyotypes, and sequenced.
With these techniques, researchers have identified differences and similarities in sex chromosome content and organization across
amniotes and have addressed hypotheses regarding the frequency and direction of past changes. Here, we review studies of sex
chromosome evolution in amniotes and the ways in which the field of research has been affected by the advent of BAC libraries.

1. Introduction

Studies of the evolutionary history and functional dynam-
ics of amniote sex chromosomes have been enabled by
bacterial artificial chromosome (BAC) libraries. Here, we
review several aspects of amniote sex chromosome evolution
as characterized by experimentation before and after the
construction of amniote BAC libraries and we suggest that
the rate of discovery and reach of comparisons have been
increased by BAC resources, especially for birds and reptiles
in which variability of sex chromosome organization offers
great opportunities for evolutionary research [1]. In addition
to describing BAC-enabled research published within the
last decade, we also describe experiments that will allow
researchers to use BAC libraries to describe rates of evolution,
dynamics of intrachromosomal variations, and frequency of
independent origins of sex chromosomes.

A genomic BAC library consists of many DNA fragments
representing the whole genome of an individual. Each BAC
clone contains 100–200 kb of contiguous genomic sequences,
providing probes for in situ hybridizations on chromosomes

and for determining long-range organization of genes. The
number of BAC clones in a library varies depending on the
genome size of the species as well as the depth of the library
representing the whole genome. For the construction of a
BAC library, DNA is isolated and fragmented by hydroshear-
ing, nebulization, or partial restriction digestion followed by
preparative pulsed field gel fractionation. Fragments are size
selected, ligated into a specialized vector, and maintained in
Escherichia coli that are archived in 384-well plates at −80◦C.
Colonies representing the library are gridded onto high-
density nylon filters, and respective clone DNAs are anchored
to filters by cross-linking [2, 3]. High-density nylon filters
serve as maps to BAC libraries. Radio-labeled probes can
be hybridized to filters to target clones bearing sequences of
interest (Figure 1). Alternatively, “smart” pooling strategies
can be employed to screen BAC libraries via polymerase
chain reaction [4].

Several BAC libraries and associated resources are avail-
able through the Children’s Hospital Oakland Research
Institute (CHORI), the Arizona Genomics Institute, the
Clemson University Genomics Institute, Amplicon Express,
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Figure 1: (a) 32P-labeled probes hybridized to sex-differentiating
genes on filters representing the BAC library for painted turtle
(Chrysemys picta). Two-dot signals permit the gridding of multiple
384-well plates into the same space on the filters. The two-dot
pattern permits the gridding of up to 72 384-well plates on one
nylon filter. Arrows indicate successful hybridization of one of
several probes applied concurrently to filters. (b) Clones identified
as putative positives from hybridization with a probe for Dmrt1
regridded in duplicate onto a separate filter to be hybridized with
a single probe as opposed to the multiprobe approach taken to
initially identify positives. The secondary hybridization permits the
identification of the probe that hybridizes to each positive. Arrows
indicate three hybridizations that occurred on each of two identical
arrays representing only positives collected from the initial large-
scale hybridization. These arrays are printed side by side on the
filter. Other hybridizations that were successful in only one array
were rescreened to insure replicability.

Empire Genomics, and other vendors. Typically, whole
plates, individual clones, or high-density nylon filters are
available for purchase. The past decade has been a period of
great discovery regarding amniote sex chromosomes [1, 6–
9], and the next ten years should be even more productive as
more laboratories incorporate BAC technology.

2. A Primer on 20th Century Sex
Chromosome Research

The study of sex chromosome evolution within and beyond
Amniota has a rich history that extends beyond the advent
of BAC technology. Sex-specific functions of a chromosome
pair in sex determination were first reported by McClung
more than a century ago [10]. Since then, a series of quan-
titative and cytogenetic studies have generated hypotheses
that still serve as pillars of contemporary experimentation
[11–13]. Muller expanded on McClung’s observation by
suggesting that sex chromosomes evolved from an ancestral

autosome pair, leading to the degeneration of the Y chromo-
some but not the X [14]. Haldane posited that inheritance of
the degenerated sex chromosome could explain sex-specific
inviability in hybrid offspring. In male heterogametic species,
in which males carry X and Y sex chromosomes and females
carry two X sex chromosomes, Haldane predicted male
inviability whereas in female heterogametic species, in which
females carry Z and W sex chromosomes and males carry
two Z sex chromosomes, sex-specific inviability should affect
female hybrid offspring [13]. Dobzhansky reported patterns
of inheritance for sterility factors found on the X chromo-
some in a fly (Drosophila pseudoobscura), further suggesting
that sex chromosomes are key to offspring viability but noted
that such factors were also found on other chromosomes
and the greater number of factors on the X could be
attributed to differences in chromosome length rather than
sex-specificity of chromosomes [15]. Three decades later,
Ohno argued for a rate of sex chromosome degeneration
that matches divergence times, presenting karyotypic data
from snakes as evidence. W chromosomes appear to be
less degenerated in characteristically ancient snakes such as
colubrids that diverged from a common ancestor earlier than
characteristically derived snakes like viperids that exhibit
extremely degenerated W chromosomes [12]. Contemporary
to Ohno’s hypothesis, cytogenetic surveys rapidly improved
in reporting karyotypes of many species, including amniotes
[16, 17]. In 1990, Sry, the master gene for human sex
determination was identified and localized to the short
(p) arm of the Y chromosome [18]. These and many
other characterizations of the evolution and functional
dynamics of sex chromosomes were enabled throughout the
20th century by integrating mating arrays, tissue culture,
and chromosome staining, but molecular tools including
fosmids, cosmids, and BAC libraries increased the pace and
breadth of discovery.

3. BAC-Enabled Contemporary Research on
Amniote Sex Chromosomes

Sex chromosomes house the sex-determining genes respon-
sible for activating the developmental cascade that directs
embryonic development to a male or a female fate [19].
The techniques needed to detect sex chromosomes depend
in part on the evolutionary history of the sex chromosome
pair. Sex chromosomes originate when a sex-determining
mutation arises in a pair of autosomes [12, 20]. This initial
step is followed by the accumulation of additional mutations
conferring some sex-specific advantage and by decreased
recombination, sometimes involving chromosomal inver-
sions or rearrangements [11, 12, 21]. This process may lead
to the formation of two morphologically distinct sex chro-
mosomes, exhibiting different patterns of heterochromatin
accumulation and deletions, and to the degeneration of the
nonrecombining heterogametic sex chromosome (Y or W)
due to its higher mutation accumulation rate and ineffective
selection [12, 22, 23]. In such cases, the detection of this
heteromorphic pair of sex chromosomes can be carried out
using classical cytogenetic techniques. For instance, a simple
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Giemsa-stained karyotype will reveal sex chromosome het-
eromorphisms due to differences in size while banding
techniques (e.g., G-, C-, replication banding, DAPI banding,
etc.) will reveal heteromorphic heterochromatin patterns.

However, sex chromosomes need not be grossly hetero-
morphic in size or banding pattern as the degeneration of
the Y or W sex chromosome is not ubiquitous (e.g., [24]
reviewed in [19]). This may be the case for sex chromosome
systems at their early stages of evolution [11, 23, 25–
28] or at an evolutionary stable state in some ancient
sex chromosome systems (e.g., [29–31]; reviewed in [19])
Homomorphic sex chromosomes may therefore be cryptic
and their detection may require molecular cytogenetic tech-
niques such as comparative genome hybridization methods
(CGH; [32]) that can reveal more subtle differences in
DNA content. Recent examples of cryptic sex chromosomes
in amniotes revealed by CGH include microchromosome
systems in the dragon lizard (Pogona vitticeps) [33], the
Chinese soft-shelled turtle (Pelodiscus sinensis) [34], and the
Australian snake-necked turtle (Chelodina longicollis) [35], as
well as a macrochromosome system in the Macquarie turtle
(Emydura maquarii) [36]. Using CGH, differences in DNA
content between the sexes are revealed by the differential
hybridization pattern on chromosomal spreads of male and
female genomic DNA previously labeled with two different
fluorochromes.

In the past ten years, mapping of sex chromosomes has
continued apace of overall genome research, enabled, in
part, by fluorescent in situ hybridization (FISH) of cDNAs,
cosmids, and BACs. BAC-FISH uses DNA probes derived
from BAC libraries for the detection of sequences in target
chromosomes [37, 38]. This technique can be used to
determine the chromosomal location of specific genes (gene
mapping) and to detect rearranged regions in chromosomes
(breakpoints) [39, 40] where genes have changed order
or location. Thus, when applied in a phylogenetic and
comparative framework, BAC-FISH can be used to test
hypotheses about the evolutionary history of chromosomes
[39]. Recent studies in this area exemplify the utility of apply-
ing this technique to our understanding of sex chromosome
evolution in amniotes [5, 41–45]. For example, gDNA-FISH
permitted the localization of Dmrt1 to the Z but not the
W chromosome in emu (Dromaius novaehollandiae) [46].
In emu, Dmrt1 is the only known marker identified to date
that is solely Z linked. Beyond Dmrt1, emu sex chromosomes
appear to consist entirely of the shared pseudoautosomal
region (PAR) [47]. The singular Z-linkage of Dmrt1 in emu
lends additional support to the report that Dmrt1 is the sex-
determining gene in birds, akin to Sry in most mammals
[48]. Janes et al. [47] mapped random and targeted BACs
to either autosomes or the PAR of sex chromosomes in
emu. End-sequences of mapped BACs demonstrated higher
rates of recombination in the PAR than on autosomes,
despite equivalent population sizes of pseudoautosomal and
autosomal loci in wild emu populations, assuming balanced
sex ratios. Also, cDNA clones have been mapped to sex
chromosomes of the Japanese four-striped rat snake (Elaphe
quadrivirgata), Burmese python (Python molurus bivittatus),
the habu (Trimeresurus flavoviridis), a species of gecko

(Gekko hokouensis) [49], and the Chinese soft-shelled turtle
(Pelodiscus sinensis) [50], demonstrating a lack of homology
of Z and W chromosomes among snakes, birds, and turtles,
indicating independent origins of sex chromosomes in these
clades [51]. However, homology between chicken and a
gecko over six markers suggests the possibility of shared
ancestry.

Bacterial artificial chromosomes are also frequently used
as fingerprint maps to assign sequences to chromosomes
and organize linkage groups for the improvement of genome
assemblies [52]. BACs are particularly useful for sequencing
fractions of genomes, as in the assembly of the male-
specific region of the Y chromosomes in human (Homo
sapiens) and chimpanzee (Pan troglodytes) [53]. Comparative
physical mapping of sex chromosomes has employed BACs
for species including but not limited to cow (Bos taurus) [54],
domestic cat (Felis catus) [55], black muntjac (Muntiacus
crinifrons) [56, 57], elephant (Loxodonta africana) [58], horse
(Equus caballus) [59], South American opossum (Monodel-
phis domestica) [60, 61], tammar wallaby (Macropus eugenii)
[60, 62, 63], short-beaked echidna (Tachyglossus aculeatus)
[64, 65], platypus (Ornithorhynchus anatinus) [63–68], and
chicken (Gallus gallus) [69–71]. Mapping of degenerated
sex chromosomes, in particular, is aided by BACs because
of the low gene and high repeat content that are typical
of degenerated sex chromosomes. These characteristics can
complicate shotgun sequencing and linkage map analyses.

Contemporary research on the evolutionary history of
amniote sex chromosomes is concerned with the causes and
frequency of origination of sex chromosomes from ancestral
autosomes and the implications of subsequent chromosomal
degeneration [72]. Comparison of sex chromosomes within
and among species has benefited enormously from the
availability of BAC libraries, because they provide researchers
the opportunity to find the genomic position of long DNA
sequences that contain a targeted marker of phenotypic
interest (such as a disease-causing locus) or represent a
landmark genomic location for comparative purposes. Once
a BAC clone that represents a marker or map location has
been identified, then cross-species FISH allows researchers to
reconstruct evolutionary history. For example, BAC clones
from the library for the Australian dragon lizard that were
known to contain genes that mapped to sex chromosomes of
either snake or chicken were FISH mapped to dragon lizard
chromosome spreads, demonstrating a lack of homology of
either snake or chicken sex-linked genes to sequence on the
sex chromosomes of dragon lizards [5]. Interestingly, while
chicken sex chromosomes are homologous to chromosomes
2 in both snakes and dragon lizards, snake sex chromosomes
were found to be homologous to chromosome 6 in dragon
lizards, suggesting independent evolution of ZW sex chro-
mosomes in squamate reptiles (Figure 2; [5, 51]).

4. Future Directions:
Potential Applications of BAC Libraries

Several strategies can be used to identify sex-linked mark-
ers in species with heteromorphic sex chromosomes. For



4 Journal of Biomedicine and Biotechnology

Figure 2: An example of two-color BAC-FISH showing hybridizations
of BAC clones containing sex-linked genes from snake and chicken in
a metaphase chromosome spread from an Australian bearded dragon
(Pogona vitticeps). Red arrows indicate hybridization signals of a
BAC clone containing chicken sex-linked gene CHD1 (red signals)
onto the short arms of chromosomes 2 in P. vitticeps; green arrows
indicate hybridization signals of a BAC clone containing snake sex-
linked gene KLF6 onto the short arms of chromosomes 6 in P.
vitticeps, thus showing nonhomology of ZZ/ZW sex chromosomes
in reptiles [5]. Scale bar indicates 10µm.

organisms with a sequenced genome, targeted BAC library
screening can be performed to generate sex-chromosome-
specific probes [73]. For nonmodel organisms lacking a
sequenced genome, several approaches are possible. First, a
large number of random BAC clones could be FISH mapped
onto chromosomal spreads of the target species to determine
which clones map to the sex chromosomes. The total number
of hybridized BAC clones depends on the coverage of the
BAC library and the diploid number of target species, and
it should be in large enough numbers to ensure that at
least a few clones hybridize to the sex chromosome pair.
While this is a time-consuming and probabilistic approach,
it may be useful for some target nonmodel species. A second
approach involves the capture of the target sex chromosomes
by microdissection or flow sorting, which can then be
amplified to generate probes for BAC library screening (e.g.,
[62, 74]). For nonmodel organisms that also lack a BAC
library, a BAC library from another closely related species
could be used for screening. An additional approach to
detect sex-linked genes in a nonmodel taxon is to screen
for BAC clones containing genes known to be linked to
sex chromosomes in other amniotes. Sex-linked BAC-clone
probes generated by any of these approaches can then be
employed for physical mapping in candidate species as
described above to identify their location and synteny. Such
mapping data can then be used in subsequent construction
of a comparative genomic map among amniotes to test
evolutionary hypotheses on the origin and evolution of sex
chromosomes.
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